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II. Statement of Research Objectives

The research objectives, as stated in the amended contract, are:

(a) Investigate real language extensions

(b) Develop control design methodology

(c) Develop asynchronous coding

(d) Study the representation of states (in asynchronous hybrid systems)

(e) Formulate improved controller design procedures for synchronous

hybrid systems

''
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III. Status of the Research Effort

The objectives of this phase of the proposed research on discrete

control of continuous processes have been substantially achieved. This

annual technical status report is divided into two unequal segments, deal-

ing with research at M.I.T. and at Northeastern University. The second

and shorter segments constitute the final report of the Northeastern Uni-

versity Subcontract, under the direction of Professor Kaliski; however,

only 4 weeks' effort was budgeted due to his sabbatical leave of absence.

A. Research at M.I.T_

1. Coder Synthesis for Synchronou Systems

We have already motivated our study of coders in the context of

digital control systems; in fact, in many cases the entire system in the

feedback loop may be viewed as a coder. To recapitulate, we viewed a

coder simply as a map

G: RP  W

where RP * is the free monoid generated by RP (p-dimensional real Euclidean

Space) and W is an alphabet (a finite set). Some examples of coders are

(memoryless) A/D convertors (or more generally quantizers) and delta modu-

lators. In a more theoretical view we may wish to model our digital con-

troller as a quantizer followed by a transducer (such as a finite-state

transducer or a pushdown transducer, etc.) with the following implications:

That all coders may be decomposed into the cascade connection of a memory-

less quantizer followd by a transducer, and that the most general coder

may be represented as a quantizer in cascade with a Turing transducer.

Simple counter-examples show, however, that not all coders may be realized

this way. Our research has been directed toward establishing general
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canonical realizations for coders.

We have identified three basic approaches for the development of the

realization theory which we loosely term the analytic, the algebraic and

the linguistic (or syntatic) approaches. The former approach involves

obtaining physical realizability constraints for Kaliski's general coder

decomposition theorem [1]; this viewpoint is currently being pursued

although no results have yet been obtained. We summarize here the results

of the last two approaches. Here we have begun to develop a hierarchy of

coders of increasing complexity, motivated by the already existing hierarchy

of automata.

The success of the algebraic approach hinges on the definition of

appropriate right-congruence relations on Rp . We have defined a gen-

eralized Nerode equivalence relation = for C which may have finite index

even though the minimal realization of C is not finite-state. The relation

is defined as follows: u 6 v iff Cu,6e(y) = Cv, (y) for all yeR
P * ,

where the shift-conjugate function C u,: Rp * - W is defined below.

Cu(y) = Cr (y) yeRp * with 0 < Z(y) < £(8)

Cue (y) Cr(y) yERp with Z(y) > 9(8)

OcRp * is a parameter. Then a coder is defined to be shift-finitary if the

minimum length OeRP * for which = has finite index is one (with the impli-

cation such that a 0 exists), Special cases are as follows:

(i) The index of e is 1; C is said to be shift unitary

(ii) E has finite index and the minimum length of 8 is zero; C

is said to be finitary
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(iii) has unit index and the minimum length of 0 is zero; C is

said to be unitary.

The most general coder in this hierarchy, the shift-finitary coder, has a

minimal hybrid state-space RnxQ, where n = Z(0) and Q is a finite set. The

structure of the coder is shown in Figure 1. In the case of a shift-unitary

coder, the finite-automaton in Figure 1 has only one state. Clearly, the

shift-register of Figure 1 is not present in the realization of unitary and

finitary coders; these coders are finite-state realizable, and may be

decomposed into the cascade connection of a quantizer followed by a finite-

state transducer.

In the linguistic or syntatic approach we view the coder as an ac-

ceptor of a real language L, which is a subset of R * . Here we take W to

be the two element set {0,1}, and C accepts L as follows:

C(y) = f1 if yeL

0 otherwise

The most general grammars that we have studied for generating real languages

are the real context-free grammars; these are a generalization of the real

context-free grammars of Lemone [2]. We have generalized the notion of a

pushdown automaton to accept real-valued signals; this new "machine" has

a hybrid control module (state-space Q xRn for Q an alphabet) and a stack

with a hybrid stack set Q2 xR
P , with Q an alphabet. Since context-free

languages are nondeterministic in general, this acceptor is also non-

deterministic.

Since the continuous-state part of this pushdown coder is infinite
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dimensional, the coder may be considered unrealizable, unless of course an

equivalent finite-dimensional realization can be found. In principle this

can always be done (according to Kaliski's general coder realization theorem

mentioned above), but in practice this may only be feasible for special

examples. A subset of the real context-free languages are the "bounded real

embedding "1 (BRE) context-free languages, where the acceptors for these

languages have a finite stack set. These languages may thus be viewed as

M
the largest general class of real context-free languages which represent

realizable coders (although for the purposes of coding we should restrict

ourselves to the deterministic subset of these languages).

The right-linear real languages* are a proper subset of the deter-

ministic BRE context-free real languages. Here there is no stack at all

in the acceptor realization; the coder is finite dimensional (with a state-

space QxRn, Q an alphabet; see Figure 2). An acceptor of a right-linear

real language is only finite-state realizable if the grammar is of order

one (the order of a grammar was defined by Lemone [2]). In fact the coders

which accept languages generated byfirst order grammars are precisely those

coders referred to above which may always be decomposed into the cascade

connection of a memoryless quantizer and an automaton.

The syntactic approach to coder synthesis has clearly been illuminat-

Productions of a right-linear real grammar take the form

A -wB weo

or A B

where A, B are nonterminals, w is a string of terminal symbols of length

n
n, and $(ZR is a replacement set.
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Structure of a Coder Specified by a Right Linear
Real Language
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ing. We note that our extension from finitary to shift-finitary by the

addition of a shift-register appears natural in the context of right-linear

real languages (any language describing a shift-finitary acceptor is right-

linear). It would be premature though to say that the natural structure

of coders are those corresponding to acceptors. Further developments are

needed along the lines of the analytic approach mentioned above and an

extension in the syntatic approach to more general phrase-structure grammars.

2. Discrete Control of Synchronous Systems

The design of a digital controller for a continuous-state system

usually involves the design of three subsystems: a coder, a control algo-

rithm (e.g., to reside in a digital computer) and a decoder. If the coder

and decoder are allowed to be dynamic systems and the control algorithm

is modelled as an automaton, then it is clear that the digital controller

may be viewed as a coder connected directly to a decoder. The structure

theory we have developed for coders, some of which may be extended to

decoders, then provides general models for the controller. An interest-

*ing viewpoint yet to be fully explored is to view the controller as a

* translator T of real-valued sequences into real-valued sequences

(T: RP * - Rm *) using syntax-directed schemas [3] to describe T (these

consist of pairs of real grammars, one called an input-grammar and the

other called the output grammar).

In the case where the coder and decoder are constrained to be finitary,

the entire controller may be viewed as a finitary coder C: RP * - W where

W is a finite subset of RM, the plant input set. A finitary controller

may thus always be decomposed into the cascade connection of a memoryless
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44

quantizing coder, a finite-state transducer and a memoryless decoder, the

latter being simply a realization of a mapping from the finite output alpha-

bet of the transducer to W. All of the procedures discussed in the literature

for designing finite-state controllers concentrate on designing the trans-

ducer; the design of the coder and decoder are omitted. Also, since these

schemes involve either approximation or learning via ad hoc adaptive algo-

rithms, the theories provide no performance guarantees.

We have developed an algorithm for designing finitary coders for a

very general class of nonlinear deterministic discrete-time systems: those

that are piecewise continuous. The algorithm provides an effective procedure

for computing the coder, transducer and decoder for the following problem

formulation: Given the plant F, find a finitary feedback controller that

will drive the plant state, starting initially in Xo , to the target set Z

in a finite number of steps. This is the finite-horizon problem; in the

infinite horizon problem, the plant state is required to remain in Z for

an infinite period of time once it has reached Z. In both of these cases

the regulator initial state is fixed and depends on X . This has been
0

termed the synchronous control problem by Gatto and Guardabassi [4] and the

weak regulator problem by Sontag [S].

The controller is designed in two steps: First an aggregate finitary

model of the plant is obtained, and second, a finitary controller is designed

for this aggregate model. The aggregate model has the following properties:

(i) it is a nondeterministic finite-state system

(ii) the states of the model are in one-to-one correspondence with

the blocks of a finite partition P of the plant state space X
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and (iii) the set of possible states that the model may be in at any time

k, viewed as a subset of X, always contains the actual plant

state at time k.

It is the task of the designer to choose the partition P. Once this par-

tition is chosen, the aggregate model may be completely specified. At

this stage in the design, the only requirement on the choice of P is that

the aggregated sets X and Z--specified new in terms of blocks of P--still

00

provide an acceptable aggregate control problem formulation (e.g P is

well-suited to the approximation of X° and Z)o

The solution of the aggregate control problem requires the design of

a finite-state controller for a nondeterministic finite-state plant. The

problem formulation now appears to have similarities with the usual "un-

*known but bounded" stochastic control problems (see Sira Ramirez [6]) and

the control problems for deterministic finite automata (Gatto and Guardabassi

[4]), although neither of the solutions to these problems are directly

applicable.

Since the states of the controller may be viewed as state-estimates

of the aggregate model, the specification of P also provides us directly

with the coder (since there are only finitely many different state

estimates). The remainder of the controller is designed in three stages

(for the infinite horizon problem). The first part involves the computation

of all those state-estimates contained within Z for which there exist

control inputs, guaranteeing that future state estimates have the same

property. Specification of these admissable control inputs defines a

finite partition on the plant input space, once again because the set of
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all possible state-estimates is finite, and this partition partially

specifies the decoder. The second part involves sequentially identifying

all those state estimates that are controllable in finite time to the

estimates computed already, until a state-estimate is obtained that contains

X . Again, the admissable control inputs define a finite partition on

the plant input space. The design is completed by selecting from each of

the blocks of the input space partition (obtained in the first two parts

of the design procedure) a representative input. This completes the design

of the decoder.

The straightforward application of this algorithm has the following

potential disadvantages:

(i) A controller may not exist for a particular partition P

(ii) If P has a large number of blocks, it may be impractical to

compute the controller because it will have too many states.

To keep the design feasible, the number of blocks in P must be kept as

small as possible. However with coarser partitions it becomes unlikely

that a controller may be found. To overcome this dilemma, we have develon-

ed a hierarchical design procedure, wherein the controller is computed in

stages. A two stage design proceeds as follows (the extension to an n-

stage design is obvious). A coarse partition P1 is chosen, together with

a "large" target set Z 1 D Z, and a controller- is designed for F, X and

ZI, based on PI. Then, a refinement of P1; called P2, is chosen, and a

controller is designed for F, ZI, and Z. Note that if at either stage

no controller can be found, it becomes necessary to try to finer parti-

tions and/or largertarget sets. Design experience with actual systems



will clarify what choice may be appropriate. At each stage in the hierar-

chical design procedure, the controller with the fewest* states is sought

by choosing the coarsest partition possible. At each stage then we are

dealing with a nondeterministic automaton as an aggregate model of the

plant, which has a state set which is not too large to make the controller

design impractical. Details of these results appear in Appendix H.

3. Analysis of Asynchronous Feedback Systems

The most important phenomenon encountered in asynchronous hybrid

systems which does not occur in synchronous systems is sliding mode

behavior--"infinitely fast" switching which may occur along a discon-

tinuity in the state transition function and which results in a trajectory

shape which could not occur in the absence of the discontinuity. An-

other phenomenon is that the class of systems which admit finite-

dimensional realizations is less pervasive in practice than for synchronous

systems.

The problem of representing sliding mode behavior in asynchronous

hybrid systems arose even in the restricted context of diced systems

(Appendix C) in the form of a condition that the sequence of switching

times for such a system be "asymptotic"--i.e. have an infinite limit.

We have constructed a counter-example of a diced system which is not

asymptotic (included in the continuation proposal for this research).

This shows that there are cases where sliding mode behavior may achieve

exact equilibrium in finite time; however there are other cases of slid-

ing where this does not occur. In such non-asymptotic cases, the use

of switching-times as hybrid state variables is not sufficient to fully

characterize the behavior of a diced system.



-12-

This paradox implies that care must be taken in developing a

realization theory for asynchronous (continuous-time) hybrid systems.

One possibility is to consider a class of realization which enforces

a separation of control and that flow at inputs and outputs and to

place conditions on the maximum switching rate of control signals.

Many problems are known to arise when both control and dtat are combined

on a single channel (e.g. Witsenhausen's counterexample in stochastic

control). Some examples of hybrid systems which arise naturally in

robotics are given in Appendix F.

An important class of applications which can be represented as

asynchronous hybrid systems arise in multitasking systems where the

tasks involve interaction with continuous processes (timing processes).

It has been shown (Appendices D,E) that under certain conditions such

systems admit a synchronous hybrid representation. These conditions

place a limit on the number of tasks (to ensure finite-dimensionality),

on the minimum delay in switching tasks, and on the degree of continuity

of the continuous processes. An example of representing a temperature-

control system in this manner has been provided in Appendix E.
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B. Research at Northeastern University

Much of our work is based upon the key decomposition result reported

in [ 1]. Specifically we cite the following Theorem: Let C: R* - [0,1]

be an arbitrary coder. Then for any n > 1, C may be decomposed as

C= C2.C1 where • is functional composition. C1: R* - Rn and C2: Rn _ [0,I].

Further C is realizable by a finite-dimensional discrete-time system of

dimension n. Although such a result is primarily only of theoretical

interest it serves as a starting point for relating properties of C1 and

C2 to those of C and conversely.

1. Well-Behaved Coders from the Input/Output Viewpoint

The research undertaken here sought to identify and, if possible,

make rigorous, the notion of a physically well-behaved coder. This notion

is an intuitive one, e.g. the coder defined by

Cc (u.-1 uk) =0 if ul + + uk O or if u is null

Sotherwise
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is intuitively well-behaved, but the coder C8 defined by.

- g C (U°.'.uk) = 0 u = X, the null str~ng

0 ul...u k is a palindrome

1 otherwise

is not. Clearly some implicit notion of continuity is involved here,

although we must be careful in using the term "continuity", as the range
of the coder is discrete. We developed several potential definitions of

"well-behaved" during this research period that embody these concepts.

Further research should try to relate these various definitions to one

another and to the more formal algebraic/topological approaches already

explored. We give some of these definitions below

Definition 1: C is well-behaved at ul...ukif > £ >0, dependent upon
k

u....uk, such that if v. .vk e R* obeys ui -v i l S £ then C(ul...uk) =

C(v1 .• .Vk).

Definition 2: C is strongly well-behaved of order k > 1 at ul...uk if

3 L > 0, dependent upon both ul. 1- k and L, such that if vl...vk C R*k

obeys I lui-vi <L  and wl...w e R* is arbitrary, p : L then
i=l

C(ul...uk W...w) = C(vl...vkwl...wp). We say C is strongly well-behaved

at ul...uk if it is strongly well-behaved of order L at ul°..uk for all

L> 1 and s* = min £ L} > 0.
L

Note that this latter concept embodies the notion that "close together

strings" (within £*) of the same length map to the same values regardless

of what is appended onto their ends. The values, of course, depend upon

what is appended. If C is strongly well-behaved at ul...u k then the



C-neighborhood of ul...uk consists of length k strings that are Nerode

equivalent to U1 ...uk (as well as other strings, possibly, of length dif-

ferent from k). Interpreting, correctly, "well-behaved" (Def. 1) as strong-

ly well-behaved of order 0, we see that each of these properties are

successively more stringent.

We posit two other difenitions that follow a somewhat different tack.

Definition 3: C is causally well-behaved of order C > 0 if whenever

C(ui...ukl= C(v . . . v k 2) then if wl...wp in R* obeys Jw1 ] + ... + jwj <
then C(u l."k ,w1 .w ) = C(vl...v k 2 w1 .. ). If the above is true for

any E > 0 then we say that C is causally well-behaved.

Note that all of the above definitions are "independent" of the

decomposition maps C1 and C2 discussed earlier. They are suggested to

indicate the flavor of the thinking undertaken here, and must be viewed as

"first efforts".

2. Well-Behaved Coders from the Decomposition Viewpoint

A second area of research involved the problem of "behavior" attacked

via the decomposition maps C1 and C2. The one-dimensional case (n=l), being

general, was studied. Appendix B to this report details a theory of "good

behavior" for the map C, oriented about the constraints of boundedness and

Lipschitz continuity. We thus do not discuss the details of this here.

Work during our first contract year sought to characterize intuitively

well-posed "threshold" maps C2, and such work was reported last year. Some

effort was made during the current contract year to topologize {0,1}* so

as to generalize the bounded uniform Lipschitz constraint to C directly--

its preliminary nature does not justify its inclusion here.

1.* I. I
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3. "Similarity" of Coders and Related Notions

The notion of similarity of coders C and C is an important one. As

seen elsewhere in this report many synthesis results for finitary

and other types of coders have been developed.

Knowing that a given coder is "similar" to one of these "canonical" forms

is useful, for, within the allowable tolerance of "practical realizations"

it may be sufficient to realize the similar, canonical coder in lien of

the given one. Furthermore placing a metric on coders may allow us to

appropriate arbitrary coders C: R* - [0,11 by (sequences of) coders with

finite domain ([ 2] has pursued a similar approach using formal grammars)

For these reasons a brief study of coder sililarity was undertaken,

motivated by work in pattern recognition theoretic similarity ([ 7]). By
positing the definition that two coders C and C are similar if their

aassociated languages L(Ca) and L(Cs) are similar as sets of strings of
i real numbers (recall that for C: R* {O,l} a coder L(C) C I{11), the

problem can be reduced to exploring similarity measures amongst subsets

of R*. These can be generalized from notions already developed in finite

set similarity theory or from similarity measures of singleton sets (i.e.

between strings).

4. Asynchronous Coders...The Underlying Framework

Asyncrhonous systems must explicitly incorporate the notion of time--

for it is at irregular often event-driven times that transitions can take

place, etc. Several approaches to this incorporation are possible. One

method involves explicitly adding a time variable to the input and induced

output sequences of the coder map. This approach will be explored in

.... .. .... .. .. .. ..... ....... ... ........ ... ....... ..s.. ... . ... ...... ....... .. .....I | ...... .. ... ... ........ ." i r| ...
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future research and as such will not be presented here. The second involves

eliminating, at least formally, the notion of discrete time and working with

coders whose domains are functions, instead of sequences. Appendix G

to this report examines such a construct called a functional real

coder. We chose the range to be real to simplify the overall flow and to

better isolate the theoretical constructs needed. This appendix attempts

to generalize the fundamental notion of unitary coder to the functional

coder case and shows that an "extra" condition, that of essential continuity,

must be introduced.

5. Concluding remarks: Software Realizations/Implementation of Coder

Concepts

Many useful algorithms constructs have been developed over the past

two years. Although the work reported above was theoretical, the potential

for syntax-directed, linguistic models for coders can be made a reality.

Further research can, and should be undertaken, to help completely automate

coder design for a wide class of coder structures.
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VII. New Discoveries, Inventions and Specific Applications

The coder realization theories presented in Appendix A lead to

practical synthesis algorithms for an important class of devices.

Comparable algorithms already find very wide use in analog filter

.1 and linear circuit design and in digital circuit design, and we

recommend that the development of algorithms for automatic synthesis

of coders and decoders be pursued as an important technical advance.

Algorithms for feedback control design have also been suggested

in Appendix H. While these results are more preliminary, they should

definitely be pursued because they represent a synthesis method for

global nonlinear feedback laws, and no simple or effective general

solution to this problem are currently available.

Potential applications to robotics and multitasking computer

operating systems have been described in Appendices E and F.
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RZALI:ATION OF A/D AND D/A CODERS

SD.C. Wi7:e:, Craduate Student, Laboratory for In-
formatvon and Decision Systems, 1!assachusects Insci-

* %ute of Tezhnology, Cambridge, '.ass.

T. L. Johnson. Visiting Scientist, Laboratory for
Information and Decision Systems, Massachusetts In-
stitute of Technology, Cambridge, Mass.

M. E. Kaliski. Associate Professor, Department of
Electrical Engineering, Northeastern University,

Boston, %ass.

ABSTRACT

The notion of a discrete-time coder as a device

which converts real vector-valued sequences into
sequences over a finite alphabet is formalized. A
hierarchical classification of all coders, in terms
of their input-output mappings, is sought. This
classification is based on a canonical structure
theory being develcved for coders. An algebraic
approach is used to define three classes of coders
which have simple canonical realizations, i.e., ones

for wh.ch known synthesis procedures may be used.

It is proposed that coders be viewed as acceptors of
real languages, and the hierarchy of the real lan-

guagesbe used in conjunction with the hierarchy

suggested by these three coders to achieve a com-
plete classification.
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NOMENCLATURE into sequences of symbols over some finite alphabet
and vice-versa. They for7 the interconnection be-

C coder mapping Rp* W ween systems whose vri3a;es evolve on the continuum

2(u) the length of a sequence u, Z(A) = 0 and systems, such as digital co.puters, which have a
q a memoryless quanti:ation mapping, q: R

P  
W discrete state and inout set. Coders and decoders

are therefore inherent s-bsystems in hybrid control
R? p-dimensional real Euclidean space systems (1), where the plant state variables and out-

inie set ofs code ouputsyputs take values in the reals, and the controller is
6 set membership sysbol modelled as an automaton.
S next-stae mapping of a finite state system
S readout mapping of a finite state system In the development of any general compensation

a right shift transformation scheme involving an autonaton as controller, the choice
left shift transformation of the coder and decoder snould be included in the

A the empty strin overall design process; the design of the coder and de-
the empty set
an' equivalence relation coder is in fact central in the compensator synthesis.

X/ the set whose elements are the equivalencs clas- While var.ous hierarchies of automata stvuctures exist

ses of X modulo2: (finite-state, linear-bourded, pushdown, etc.) pro-

0 denotes function composition viding the necessary desi;n constraints, no such

Y for all classifications exist for coders and decoders. A con-
straint on the coder may be that its "continuous-

C state part" must be in the same class as the plant
SUPERSCRIPTS (for example finite-dimensional) and its "discrete-
Stgstate part" in the same class as the automaton. Thus

it becomes necessary to develop a canonical structure
X the free semigroup generated by the set X theory for these systems.
f* the causal extension of the function f

Some examples of coders comronly found in prac-

INTRODUCTION tice are menoryless quan:i:ers, ,:3nti.crs with
hystersis (2), differmntal cuanti:ers (Q) and re-

Coders and decoders here are devices (such as settable ntegrators. A quanz,:cr with hystersis
A/D and O/A converters) which transform real-valued is shown in Figure I below a;'J. - iy be reali:ed as a
sequencesl quantizer (different fro:% ) -:lowed by a finite

automaton. Ile will call zoders which can be decom-
Any sampling in time is assumed to have taken place posed this way finitary coders. A coder which is
prior to conversion, not finitary is given in Figtre 2.

i We will view a coder as a mai

C: R
P "

where Rwa i the set of all titie length sequc:zcs

of vectors in RP , anJ W i :i4: s::ei:v act of outnut

. .



ofu~ the coder. Adecider perforns the inverse Definition
operatican. It his already been sho-.- (4) that any Let C be a ceder and consider t he associate/ set

Scad~r may be realized, for n > 1, as a composition or conjitgate transformat:-:s -C:U:ueRP 1. [
. , ~ Of in n-di~nensional d~screte-time system followed by is finite we say C is s~ -. nJ if s wsay

a nmcmoryless quanti:er (Figure 3), i.e., as a com- C is unitary. "

position of maps C : Rp  - Rn and q: Rn - W. hile

this decomposition is completely general it is not T R --

the most useful one in terms of coder synthesis. modified to handle secuences over RP. Note that this
This is since any part of the coder that would nor- notion of a unitary coder is only useful if the domain
mally be synthesized using digital logic circuitry of C is R

p
*
- 

A minor modification in the definition
is treated as part of the discrete-time system with is necessary if one wishes to define unitary coders

input output map C, with states taking values in Rn. on Rp * . We will clarify this later on.

Our aim will be to develop conditions on the mapping
C for the coder to be synthesized using standard Exaple

circuit synthesis techniques. It is thus desirable + A quantizer is a memoryless coder with domain

that these conditions result in realizations of C in R
p  

given by
which the inherently analog and inherently discrete
parts are identifiable. The results that are pre- C(Y1 ...yk) * qCyk)
sented here are preliminary and pertain to certain

"simple but practically useful" coders; in general where q: R
p 

' W. C is clearly unitary.
the problem concerns the realization of nonlinear
discontinuous mappings and is difficult. The results Exanole
for decoders are similar and are not given. C: R* W is defined as

NOTATION AND DEFINITIONS CCA) A I

Definition C(yl...yk) 0 if Yk 10 and the number of non-
A coder is any function negative terms in y1 ...yk_ 1 is

C: R
P * 

-W either even or zero -

where W is a finite set consisting of the coder out- I otherwise
put s;zbols., Sometimes the domain of C will be the

senigroup R
P  - RP*-(A where A is the empty string. Then C a {C1 ,C 2 ,C 3}, Ci: R* - {0,1) where

In the sequel the domain of C is alw_/s assumed to C. a Cr
u

, uEcU qR* for i - 1,2,3, and

be R
p
* unless otherwise indicated. I 1

UI = {uR*: the number of nonnegative terms in
To view a coder as a mapping from strings to u is odd, and the last term is negative)

strings we define the causal extension of C to be the
mapping U2 - {ucR*: the number of nonnegative terms in

u is odd, and the last term is nonnegative)C:RP°  
W+

U3 - {ucR*: the number if nonnegative terms in
obtained by extending C as follows: u is even or :ero}j(A}

and thus C is finitary.
C-(A) - C(A)

Example
Ca(Yl..y k)  CC(A)C(yl) ...C(yl...yk ) The quantizer with hystersis of Figure I is

defined as

Definition

Let X be any set. C(A) a w

(a) The left shift transformation a: X* - X* is C(y) a q(y e ad(W)) yeR
defined as follows:
ax xC2) .... x(k) if x x(I)x(2) ... x(k) for C(yl" " ' yk ) q * ad{C "yk-)}) k + l,3..

x( i)cX, k > I where aeR, w 0 W are given and d is an injection of WxI 0 Iwee ,w

into R. Suppose I - (i,:'. d(j) a -2, d(B) a
i a = 1, w°  a and q: R-(a,& is the mapping

We extend this to multiple shifts by defining a to q(y) a aif y > 0

be the identity map, 0
I  

l a and anl .a n. 8 otherwise. Then it is easy to seeSthat the finite state syt.ioF Figure 4 is a realiza-

(b) The right shift transformation T: X* X is tion of C. We will see i:s. this ofnnies C ;s finitar'.
. dc fin.i Note that a ,vco.%uosito7 ii :his coder in the fern

" .of Figure 3 appears unna:Lra .T.Ux a us Yfu, xtK

Alterciate description5 -f unitary and finitarv
coder, may he obtiined '.a :he mechanjsn of Ntrolle

2



tt-,'.Ietrnz C W- the finite outout s:, '.

6: QxY-Q is the next-sta:-Z i.c-:ion given by

t,; be se.uences in R and define the S(qi ,y) = qj if !;::- f

: er de) equ ivalence relation (6) = on R
p  as : Q- is the rea out u ::3 .

u ' "/ C Ux) " C(vx) Y xc
p
* A finite automaton (6) is !efined similarly exceot

that Y is a finite set and the notation St is used

It is immediate that % is a right-congruence on instead of ,L.

RP. The following proposition is also evident, and Note that the specifization of i defines the sets
the proof is left to the reader.

A i, and that for fixed i, the sets A.i, j * ....

Proposition form a partition of Y.
C is finitary iff c has finite index.

For a particular initial state q eQ, the re-

A coder which is not finitary is the shift- sponse function of MT is the .aD

unitary coder defined below.

Definition '

For each eR
p " 

and some fixed 8eR
p  

define the

shift-conjugate functions Cut R
P *
- IW of C as follows: given by

C CT (A) MT,qlkyl .... Yk
)  . 8(3*(qyX...' Yk) k * 1,2....

Cu(Y...yk) = c U *y..k k -1.2,. .. , ()-l

C(y ... y~) = C u(y. kL,..k Definition

Then we say C is shift-tmitar! if C u: udtl} = C} C has memory soan N if S is the smallest non-

for so e 5cR . negative integer such that

Exarole C(y1 .
. 
YO ' C(Yk-N ... k) k a N-,NZ..

Consider the coder C given by
If no such N exists, then we say that C has infinite

C(A) =,0 memory span.

C(y) a sgn(y -1) yeR CODER REALIZATION, SYNTH SS
2 2

C(Yl...Yk
]  = sgn(y -y 2.) y eR; k a 2,5,... A unitary coder is the si-lest of all coders;

it is memoryless. This is the statement of the fol-

where sgn: R-[0,11 is the mapping lowing Theorem.
i ~Theorem +'R

p

sgn(y) ThI if y>O T Rp  
- W ;.s un-ta.y iff there exists r ,'ap

0 otherwise q: R
p 
* W such that for all Yl .... Yk ER

Then C is shift-unitary with 9 - (1,l) for any C(y 1 .... yk q(Ok'ly I .... yk
)  k - 1,2 ....

e1>i.

Proof. Necessity.

The definition of a shift-unitary coder for the First define the sets A. for each w.EW as follows:

case where xCS) I 1 is precisely the definition of a 1

unitari coder with domain R
P *

. The fact that a A, a 1 yeRP: c 1y) - w

shift-unitary coder is not finitary (except for when
it is unitary) will become evident in the next section. Then

The foilowing definition will be useful in char- C(y." .yk) = (CT "  k-
aztt.-:in; ftnitary coders. 

I

1efinition ' C(yk) since C is unitary

A threshold finite automaton (TFA) is the 5-tupe I e i  i y-A

. * (Q,Y,',.f,3) Now define the function - as

.-c q(y) - w. ifv-,A.

t the finite iet of states, Q (q
.  

q I Then

S ,in';t sec, YC RP

C(>'1l ..)k) aqr ,



SuEizi"--cy. We take ; = C =Ck where.z ;Jk' and

C(yl'".Yk = q(ok-i .MTq (Y1' 'jk = OL - , ,y . ))

for some map q: R
p 

-W. Then for uxR
p
*
,  8 (CT, T A

(cTU)(Yl. .k)= q a l(u)+k'l.yk) - q(yk) = C(y ..yk )

k - 1,2,... and MTq CA) ' BC(*(ql,:)) CC;.).

and hence C is unitary. Q.E.D. The proof of the converse is left to the reader. Q.E.D.

The synthesis of a unitary coder therefore in- The coder of Figures 1 and 4 is therefore fin-

volves the synthesis of the map q: R
P 

- V. Note itary. The following result separates out the

that this may not always be practical; consider for threshold-type operations that occur in the TFA real-

example the map ization of a finitary coder from the dynamic part.
and hence tells us how to go about synthesizing the

q(y) = I if y is rational coder. This decomposition should be compared with
that of Figure 3.

0 otherwise

Theorem
We will no: attempt to define a "well-behaved" quan- C is finitary iff C may be realized as the com-

tizer here. position of maps

Finitary coders are more interesting; they are C - ClOC-
dynamic and in general have infinite memory spa. 2

The finitary coders are precisely those coders which

are finite-state realizable. This is stated in the where C2 : R
p * 

- V is unitary, V is a finite set, and

following theorem; the equivalent result in automata C V*- W is finite-state realizable.
theory is standard (6),(7).1

Proof. Suppose that C is finitary. Then by the
Theorem previous teorem, C is the response function of a re-

C is finitary iff C is the response function of
some (minimal) TFA. duced T A KT = (Q,RPI,, . Define th. functions

Proof. Suppose C is finitary. Define the sets q1 as follows:

Aij {yRp: uyeU Yu E U} qi: R
P
* (l,....r} i 1. r

where the U.c R
p " 

are the congruence classes of the 
via

right congruence 2. For fixed i, the sets A.., qi(y) = j if )CAij
j * 1 ... r cl'arly form a partition of R. Wn noh
j - 1,...,r clar form ini a pa t ition = ,Rp,, W. n where the A. C R

p 
were defined in the proof of the

construct the (minimal) TFA M(T - CQ,RP,IV,d,O) as 1)
follows: previous theorem. r is the cardinality of Q. Now de-

fine q: R (.. .& V as

Q C , i.e., q . CT
u 

for uU i

: QxRP-Q via 
q(y)

d(r'y) = y and take C2 R
P *

- V to be the map

c2())

B ( i )  (A Ck h 2 (Y l ..yk ) - (y k k -1 ,2 ....

Then where p. is an) vector in x ;oiIh" n.

Clearly C, is unitary. Ofine the finite automaton
4.

y  
Ci: " for ucU M - (E,V,,,) as follows:

~~~and T ~

U(, . ~ruU where pi V -~ .. ,: .:e p.raicction map~ping

C(I). Pi(V) it[h of n.;', 0"v

4, . . . . . . .. lli



:C(A)

!+

C C (C where ,. is the se,,.ien:c! Cof 1 ngth N _ 1) appear-ing in tha definition of a sh-f:-unitary coder.

at C1 oe the rtsponse funtion : V1 W where +Proof.Foran. se ent. Y k an

B(y; i wj) i y..y

Pi(qCy)) Also define the sets YA i for eaTow we W as follows:

CC* Yi )( C- (y > N and C3(y,; ,.)) w=q i ( Y)A .i { (y ; 1, ) : y -:y i

3 6( i j Now define he map q: RPx N -W as

Nowq(y) - w i if +YcA .

(C o,*5y yThen, for yeRp  with 2(y) M.N
1C °z **(*'"k) - CI(C2L%)c2(yl)c2(YIY2)"". ONc*(Y)(1) -ccyl ... YN, wi 4=:P q (a (Y; ,s).

.'.C2 >'".>-Yk) and for yR
p 

, with i(y) • k -N4m for so=e integer

. C ( I(y)...Z(Yk) ) > 0,

= ( -(cl,, T(y l)...(yk)) AoCbcY)(l) = C(YI...Yk) .C yl.'"yMj,(yl...yk}

S3( q1,qCy1 )... (yk))) since a CaM(yl... Yk since (com y ...Yk) > L(e)

o" qc*cy)(I) by defn. of C"

. S(S,(ql.yl..yk)) - q( (a 
m
y; l,0) since Z(Co

m
y) N

. CC>'1.,.y'k)" q(B(y; k-N-lk))

The proof of the converse is left to the reader. For Lcy) = k, 1 < k < N,

Q..., cMy - cucy)

Application of these results to the coder of . Cr (Y)
Figure 4 results in the realization shown in Figure k ;

ac. " I k ( k T Y)
Not all coders with inherently discrete dynamics c(oky) k

are finitary; the coder of Figure 2 has a countable C since ,(r ) > £(0e
state set. Extensions of the above decomposition
result, where the isolated automaton is a determin- , q(B (ak-oy; I,N))
istic pushdown automaton (6) are currently being
investigated. Note that in this case a feedback- a q(ak ey)
free deconposition cannot be obtained in general.

The shift-unitary coders are perhaps the sim- Finally, for y - A
plest cla.ss of coders with realizations that have
inherentl;v analog dYnaiics and are finite-dimension- C(A) = CuA))
al. These coders have finite memory-span (i.e. nil-
-otent) and ray be irplemented with a single (real C(O)
nu-er) storage register and a quantizer. This is
-he result of the following theorem. * q(S(e;l,.))

Theorem = q(W). Q.E.D.
" = C is shift-unitary then there exists a map It should be clear :!~a: the menory span of a

1: RPxR W such that shift-unitary coder is rinite, and is equal to Z(f)-l.
(Note that although Z nap" not be uniqu.' z(i) is.)

+''"' - Yk) k > N For these coders, utv is cui.alent to the sta:tndnt

I Ny I ... k)  I < k < N u o'

Sl



and hence / is isonophic to Rpx
N . 

The exten- 3. Limb, J.O., and Nlcunts, F.11., "Digital Dif-
sion to sh-f:-finitary coders 15 currently under in- feren:ial Quancizer for Television," BSTJ, Vol. 43,
ves~iga~:n, 1969, pp. 2585-2S99.

, The example of the shift-unitary coder given 4. Kaliski, M.E., and Leno;,e, K., "Discrete
above may ie realized as shown in Figure 6. Codings of Continuous-Valued Signals," Proc. l4:.;

Annual Conference on Inforna:jon Sciences and Sy.:ems,
CONCLUSIONS AND DISCUSSION Johns Hopkins University, Dept. of Electrical Eng*-

neering, March 1980.
We have formalized the notion of a discrete-

time coder and have exhibited canonical structures S. Raney, G., "Sequential Functions," Assoc.
for three classes of coders, the unitary, finitary for Como. Mach. Journal. No. S, 1958, pp. 177-130.
and shift-unitary coders. Ile have indicated that,
from the point of view of synthesis, coders and de- 6. Arbib, M.A., Theories of Abstract Automata,
coders should be viewed as hybrid-state systems; the Prentice-Hall, Englewood Cliffs, N.J., 1969.
major task is to define classes of coders and de-
coders which have identifiable discrete-state and 7. Hellerman, L., Duda, W.L., and Winograd, S.,
continuous-state parts. A finitary coder realized "Continuity and Realizability of Sequence Transfor-
in the general form shown in Figure 3 may still be mations," IEEE Trans. Elec. Como., Vol. EC-lS, No. 4,
easily synthesizable (the coder of Figure 7 is an 1966, pp. 560-569.
example). However, this is not always the case and
is the reason for the algebraic approach we have 8. Lemone, K., "Languages Over the Real Nu.,bers",
adopted. Ph.D. Thesis, Dept. of Math., Northeastern Univ.,

We have also shown that a definite hierarchical Boston, Mass., 1979.

classification of coders exists. To aid in thisclassification, a coder may be viewed as an acceptor 9. Wimpey, D.C., "Towards a Structure Theory

k6) of real languages. A hierarchy of these lan- for Coder: of Real-Valued Signals," LrDs-Tm-IO5z,
guages exists similar to the hierarchy of languages Oct. 1980, Mass. Inst. of Tech., Laboratory for Inf.
studied in the computer science literature (regular, and Decision Systems, Cambridge, Mass.

context-free, context-sensitive, etc.). Real con-
text-free languages and their generating grammars
have been studied by Lemone (8). The language ac-
cepted by the coder of Figure 2 can be shown to be
context-free, while no language accepted by a shift-
unitary coder is context-free unless the coder is
unitary. The real regular languages form a proper
subclass of the real context-free languages, and are
precisely the languages accepted by the finitary
coders (9).

Coders form one subclass of the nonlinear dis-
continuous mappings for which a realization theory
can be developed. It is the fact that the domain of
a coder mapping is a finite set that has enabled us
to draw on many of the ideas and results in tte field
of computer science.
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ABSTRACT

F. - This paper examines certain aspects of the realizability of
input/output maps f: R* - R by one-dimensional non-linear

discrete-time systems, where R* ise f the re ni i o freals

R, under the operation of string concatenation. Realizations

are sought which are bounded and/or Lipschitz. A natural connection

between such constrained realizations and the string-processing
properties of the input/output mapping is shown to exist. These

results have further implications for the synthesis of general

analog/digital coders and decoders which find uses in computer

control system interfaces.
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I. Introduction

The purpose of this paper is to explore certain aspects of the

realizability of maps f: R R by one-dimensional discrete-time

systems, where R is the set of all finite-length sequences of real

numbers, including X the null string. The discrete-time systems

considered are of the following form:

Xk + 1 = F(xk, Uk), k = 0, 1, 2, (1)

X 0 the initial state

where F: R - R is the state-transition map.

By the realizability of f we mean that f is the input/output

map associated with (1), i.e. there exist F and x0  such that

f(A) -x0

and, for U0 UlU2 ... uk arbitrary, k > 0,

f( u 0 ... uk) -FC...(F(F(x, u0 O),ul),u 2 ),...,uk)

We consider below several aspects of the realizability problem:

(A) Realizability by systems wherein F obeys no other

constraint than being well-defined.

(B) Realizability by systems wherein F is bounded, i.e. for

some B0 1 0, -B 0 I F(v) < B0 for all v in R
2 .

and

(C) Realizability by'systems wherein, in addition to the

boundedness constraint, F obeys a Lipschitz condition for

some L > 0, i.e. for all v, w in R.

IF(v) - F(w) I < LO I1v - w I1

We will take the norm above to be any fixed norm on R2 .
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This paper will develop several general theorems yielding both

necessary and sufficient conditions for the realizability of maps f

by systems of types A, B, and C, above. Note that as no assumption

is made here about f being onto all of the results below hold even

if range(f) is a finite subset of the reals.

The problem of realizing input/output maps by (nonlinear) discrete-

time systems is, in of itself, not a new one. Studies of this type in

the mathematical systems theory literature (e.g. Kalman, Falb, and

Arbib, 1969) have been available for several years. What is new, we

feel, in the aspects of the realizability problem considered here,

are the following two viewpoints.

First, that such natural regularity requirements as boundedness

and, "Lipschitzness" lead to input/output properties expressible as

string-processing requirements. Second, that this one-dimensional

problem is actually sufficient to represent higher-order finite-di-

mensional problems as well. This is based on our earlier work

(Kaliski and Lemone, 1980) dealing with the realization of real

acceptors/coders by one-dimensional systems.

II. The -Basic Result: Well-Posed State Transition Functions

Let f: R R be a given input/output (I/0) map.

Theorem 1: f is realizable by a system of the form (1) if and only

1if f obeys the following property

for all u 9...u u£ . .. v m  in R , r in R,
flu 0- u L f(v 0., vm )

-u. f(u 0 *.. uZ r) = f(v.., vm r)

(Note: Either u... u9 or v 0... vm may be null in the above statement.)

Proof: That any map realized by the system (1) obeys the above property

is clear. Conversely, suppose that f obeys this property.
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Set K = range (f). Define a map G: K x R R as follows. To compute

G(a, b) find a string u0... u£ in R such that a = f (u0 ... u£; set

G(a, b) equal to f(u0.. u£ b). G is well-defined by virtue of theAl 2
assumed property for f. Extend G arbitrarily to a map F: R -R

and set x0 = f(A). The system (1) with transition map F then realizes f.

QED

Thus we have characterized realizability of type A.

III. Adding Constraints of Boundedness

Adding the constraint of boundedness by B0 yields the following

Theorem 2: f is realizable by a system of the form (1) with IF() I  B B0

for all v in R2 if and only if f obeys the property below:

for all u0 ... u£, v0 ... v. in R , r in R

(i) f(u0.., u£) = f(v0.. vm )

-> f(u 0... uZ r) = f(v 0 .. v m r)

(ii) Jr(uO.. u 9 r) < B B0

(Note again that either u03 .. u£ or v0 ... Vm or both may be null.)

Proof: Necessity is clear. Conversely let K and G be as in the proof

of Theorem 1. From the given property for f, lG(v)I f B0 for all v

in K x R; extending G to all of R so as to retain this bound is

trivial. The rest of the proof is immediate.

QED

We next turn to realizability of type C.

IV. Adding the Lipschitz Condition

We begin this section with the following Lemma, whose proof

_9 1 ind5
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S be a given subset of R h: S - R a map satisfying the conditior;

below for all v, w in S, for some non-negative real constants B0 , L0 ,

* 2and for some norm on R

(i) Ih(v) - h(w)< LO i - w

(ii) Jh(v) l < B0
2

Then the map H: R2 - R defined by

H(z) = max (-B 0 , min (B0 , zg s(h(y) + LOUS - yJI )

is indeed well-defined, is an extension of h, and obeys for all v, w
i2

in R (i) and (ii); above, with h replaced by H.

We will use the above Lemma in proving the following result.

Theorem 3: f is realizable by a system of the form (1) with IF(v) I- < Bo ,

and IF(v) - F(w)I < L0 v- w , for all v, w inR if and only if f

obeys the property below:

for all u0 ... uz, v0 ... vm in R, r, s in R

(i). If(u 0 ... uz r) - f(v0 ... vm s)I

< L0 i11( f(u 0 ... u.), r) - (f(v0 ... v,, s) I

(ii) If(u .. u£ r) I < B0

(Note that condition (i) of Theorem 3 implies condition (i) in

Theorems I and 2; also u0... uz or v0... v M or both may be null.)

Proof: Again necessity is clear, as if such a system exists,

f(u 0 ... u£ r) = F (f(u0 ... Ut), r)

f(v0 ... vm s) = F (f(v 0 ... vm ), s)



As for sufficiency, again define G and K as in the proof of Theorem 1.

From condition (i) it is easy to see that G is well-defined, from our

remark following the Theorem statement above. Setting S = K x R, and

h = G it is also clear, from the assumed property for f, that the

conditions of the Lemma hold. Setting F = H, and x0  f(X) completes

the proof.

QED

In resolving question C, then, we have the following intuitive

interpretation of the constraints needed on f (viewing the norm as

being, for example, the p = 1 norm): sequences producing "similar"

f-values, followed by close together real numbers, must in turn produce

"similar" f-values; all such f-values must be bounded in magnitude by

B0. The second use of similar is taken to mean "up to L0 times as

different" as the first use of similar.

V. Discussion; Limitations of the Theory

We address several issues briefly in this concluding section.

First we address the obvious limitations of the theory: the systems

considered are-one-dimensional with the further constraint that the

output is the state. It is only in the context of a constrained

setting of this kind that we can obtain such a concise set of conditions

for realizability. More general systems settings will imply more

complex statements of constraints on f.

Nonetheless, in defense of these limitations, it should be pointed

out that theoretically, at least, (Kaliski and Lemone, 1980), one-
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dimensional realizations of the type considered here are sufficient

for coding purposes.

An essential component in the design of finite-state compensators

for discrete-time continuous-state plants is the coder, a map

C: R + {0, 1} (Johnson, 1978). Such a coder, which forms an inter-

face between the plant and the compensator, can always be realized as

the composition of two maps: a map f: R * R, and a map g: R - (0, I}

(a threshold device), i.e. C = g f. (Kaliski and Lemone, 1980).

The importance of finite state compensation as a design tool

has thus renewed interest in coder design (Jones, 1978), (Wimpey, 1980),

(Kaliski and Johnson, 1979), and spurred research in related areas

of finite-state regulator theory (Gatto and Guardabassi, 1976).

It is then, in this context, that we address the questions of

this paper. With the basic, theoretical, understanding achieved here

we hope to, in subsequent research, bridge the gap to somewhat more

practical approaches. As a theoretical result, then,Theorem 3 has

considerable intrinsic interest.

VI. Acknowledgement

The author would like to thank his research colleague, Dr. Timothy

Johnson of M.I.T., for his valuable assistance in helping to formulate

the ideas presented herein.



I -8-

t4

VII. References

Czipszer, J. and Geher, L. (1955) Extension of Functions Satisfying
a Lipschitz Consition, Acta Math. Acad. Sci.Hungar, 6, 213-220.

Gatto, M. and Guardabassi, G. (1976) The Regulator Theory for Finite
Automata, Information and Control, V. 31, N. 1.

Johnson, T. L. (1978) Finite-State Compensation of Continuous Processes
Proc. IFAC Triennial World Congress, Helsinki, Finland, June 1978.

Jones, S. N. Realization of A/D Coders, M.I.T. Electronics Systems
Laboratory Report ESL-TM-817, March, 1978.

Kaliski, M. E. (1971) Dynamic Systems: An Automata-Motivated Analytic
Approach, M.I.T. Electronics Systems Laboratory Report ESL-R-453,
July, 1971.

Kaliski, M. E. (1974) Autonomous Sequence Generation, Information and
Control, V. 26, N. 3.

Kaliski, M. E. and Johnson, T. L. (1979) Binary Classification of
Real Sequences by Discrete-Time Systems, Proc. 1978 IEEE Conference
on Decision and Control, San Diego, CA, January, 1979.

Kaliski, M. E. and Lemone, K. L. (1980) Discrete-Codings of Continuous-
Valued Signals, Proc. 1980 Conference on Information Sciences and Systems,
Princeton University, Princeton, NJ, March 1980.

Kalman, R. E., Falb, P. L., and Arbib, M. A. (1969), "Topics in
Mathematical Systems Theory", McGraw-Hill, NY.

Wimpey, D.G. (1980) Towards a Structure Theory for Coders of Real-
Valued Signals, M.I.T. Laboratory for Information and Decision Systems,
Report LIDS-TM-1052, October, 1980.



-9- '

VIII. Footnotes

1 This property is equivalent to the f initariness of f when f has f inite
range (see (Wimpey, 1980) )
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ABSTRACT order non-differentiable behavior as illustrated in
Figure 1. In order to obtain existence of solutions.

Diced systems are defined as autonomous systems multivalued extensions of k onto its discontinuity
governed by ordinary .ifferential equations having dis- surfaces are required. Every trajectory can be re-

presented by a sequence of transitionponsadte,
:ontinuities (in Rn) 

on submanifolds where one or more tii points and times.

of the state variables takes an integer ialue. Suth
systems may be regarded as approximations of concinucs Definitions of various types of stability and in-
systems or as representative models of a class of dis-
continuous systems. Trajectories of such systems (for stability can be constructed from an examination ofthe invariant limit sets (21 of the trajectories. For

a given initial state) are readily calculated and may the t t e of the tractor Fr
exhibit complex sliding-mode segments. Asymptotic diced systems, the range of asymptotic behavior of tra-

jectories starting from different initial conditions
properties of such trajectories are discussed and clas- can be exceedingly rich. The possibility of approximate
sified, Motivation is given in terms of observed prop- global stability analysis using nondeterministic automata
erties of interconnected power systems. is examined and its limitations are indicated.

1. Introduction In practice, diced systems might be viewed as ap-

proximations of continuous or discontinuous systems.

Diced systems, as defined here, are finite-dimen- In the former case, for instance, we might seek the

sional autonomous continuous-time dynamic systems gay- best piecewise-constant (finite-element) approximation
dx to a continuous system. Wang (3] has presented an ap-

ernee ey equations of the form Tt- ( fxt) plication of this type for solving partial differential

xo(t ) - X CRn, >t 0o where f : R
n  

Rn is piecowise- equations. In the latter case, a state space diffeo-
0 0 0 morphism might be used first to transform the discon-

constant with discontinuities only on the surfaces tinuities of a system to lie along coordinate axes, and

where one or more coordinates of Rn take integer values, then a diced approximation could be developed which
Adiced system in R

2  would preserve the discontinuous behavior of such sys-
is very easy to illustrate: the tens. The potential practical advantages of diced ap-

plane can be divided into a uniform gird, and within proxiaations lie in a reduction of information storage
each square a vector representing the magnitude and required to characterize a system and the possibility
direction of f is shown (Figure 1). of assessing its approximate asymptotic behavior without

a detailed simulation.

v _. For example, at the time of a known failure of a
power system. it is often desirable to predict the long-
term consequences of various control strategies so that

- ,,_ / in operator can decide among them. Yet the system is
too big to store all possible consequences in advance.

- . -. -A practice which has thus been followed in some cases
(4] is to run a simulation "faster than real-time" for

•. each control strategy. While the issue of approximation
. . .,€ accuracy is not treated here, the results suggest that

significant economy of real-time computation might be
tem. However, they also suggest that the patterns of

stability and instability exhibited by such discontinuous

systems may be highly complex and that analytical methods

Figure 1: A Diced System in R
2  are not likely to yield clear-cut predictions about

global stability.

Existence and uniqueness of a solution for any II Preliminaries, Notation

fixed initial state, xo can be studied using a general- n
Let i - he a multi-index on the n-

ization of the method introduced by Filippov [1]; tra- n

ectories say exhibit sliding mode segments and higher- tuples of integers (Z). Let b • (bl,...,bn] ce repre-

sent an n-tuple of tinary numbers (I ; (0.1)). Let

-This research has been performed at the M.I.T. Labors- (x) Rn - R be the characteristic function of the
* tory for Information and Decision Systems with support :

provided by the U.S. Department of Energy (Contract open set (x - Ixl,..., xn]Rn I 'k 
< 

x. 
< 
ik

ET-6-C-0102295) and the U.S. Air Force Office of Sci- k - 1,2. .nn].
entific Research (Contract F49620.80-C.0002).
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Definition: A diced initial value problem (DIVP) ing to infinity as n,- so that
is specified by a system of ordinary differential
equations lim IIo(tntoXO)-PI 0 (2.5)

nn
;(t) - f(x(t)) ; x(t 0 ) 0 x ; t > t0  (2.1) In applying these definitions it will be useful

to recall that a function x(t) is periodic of period
where f : Rn - an has the particular form T > 0 if x(t) - x(t+T) for all t; "the" period of a

periodic function is defined as the least T for which
f(x) = fbi Xi(x) ; b = Orcn (2.2) this equality holds.

icZ III Existence and Uniqueness

and foidn for each multi-index i. Consider the DIVP (2.1), (2.2). Defining solutions

within the cubes S by integration is entirely
The surfaces of discontinuity of f may be classi- 01

Sbt n b straightforward; all difficulties arise in attempting
fied by their dimension. Let 1(b) :B

n 
* Cl,... ,n be to extend solutions across the discontinuity surfaces

a function denoting the number of "l"'s in the binary of f; in general, there is no unique continuation.
n-tuple b. For fixed iZn. consider the sets Various possibilities are

(a) To restrict the class of f so that continuations
are always unique (this is very restrictive indeed, and

essentially eliminates many interesting phenomena from
ik - xk if bk = 1, k - 1,2....,n) (2.3) consideration).

These may be viewed as the set of submanifolds "at- (b) To eliminate the non-continuable surfaces from
tached to" the point x=i.* For example Sl is the the domain of f; however, then all points on all tra-

jectories leading to such surfaces must also be elim-interior of the n-dimensional cube indexed by its ver- inated, and a large part of the original domain of
tex at xei; Sli (the shorthand 1 denoting b = [1,,. definition may ultimately be excluded.
11) is the single point a-i. The submanifolds of di-mension p associatnd with xi are (c) To choose an ad hoc rule for continuation of sol-utions; however, it -proves difficult or impossible to

do this in a self-consistent and unbiased manner.S= (Sb I 1(b).= n-p} p - 0,1..n. (2.4)
A fourth alternative has been selected here:

This notation provides a compact classification of all
of the subsets of Rn which are of interest. (d) To sacrifice uniqueness and continue all solutions

through a discontinuity.
In Section III, conditions for well-posedness of a

DIVP are examined. This is done by extending f to its In this way a viable deterministic existence theory can
discontinuity surfaces (from (foi

}, 
we generate ( b), be developed, at the cost of considering a countable

dom ei number of alternative solutions. A "physical" justi-

b 0CBn). Then a constructive procedure can be used fication for adopting this approach is that in the
to generate solutions x(t) - *(t,tox o) for each R presence of small perturbations of the initial condi-gc0 tions, a solution near to at least one alternative so-
toCR and hence to define the transition map lution will occur.
*: R x R x R

n  
R 
n
. Let X denote the function space

in which trajectories are defined. This leads to thefollowing A constructive procedure is given for defining so-lutions. To simplify its presentation, a multivalued

Definition: A diced system is an autonomous dynam- continuation of f to the surfaces Sbi, b 1 0, is first

ical system (xR ,4) (See ES]). defined. Initially, f is specified on the submanifoldsn (S I of dimension n. The continuation proceeds
Stability has been viewed as a .iualjtative property 01

of a dynamical system, and concerns the asymptotic be- recursively to submanifolds, SP of dimension n-l, n-2.
haviors of trajectories x() - 0(.,tx) aso s ... ,C Recall that S is the point set (xcRnilx - ik.
varied. Stability of diced systems is discussed in ik an integer). Notationally. a single valued fbi will
Section IV. Two useful notions will be those of the
positive limit set and the invariant set [2]. not be distinguished from a multivalued fbi' the impli-

cation being that the prescribed rule is applied to each
* Definition; The set Q C R

n 
is invariant with re- possible value of fbi in turn, and the'set of all results

spect to the system ;(t) h f(x(t),t) if for any x0 fl is retained. Let p-n. Suppose fbi are known on S!,

there is a t0 such that the motion *(t,tox o) belongs p q I n. Then f can be extended to S
- 

as follows.

to 11 for all t to f each icZn
.

i~ set a s . ale te postiv each

Definition: rhe sis called the positiv
limit set of a bounJed motion O(t;to,xo) if? for any Suppose Let indices j denote

point pC'T, there exists a sequence of times I tend- the ordered nonzero positions of b, i.e., bj ', k-I,

n-(p-1) and b j0 otherwise. The neighborhoods of Sbi
The obvious injection of the integers into the reals of dimension q, p _ q I n. can be defined as follows.
is implied. For qen, consider all indices I formed by decrementing

• 1111!
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I jk by one for any subset of the subindices k-l,.... are zero, so that further motion occurs on 5bi itself.

n-(p-l). including the null-set; then is a Thus, the procedure for extending the function f
neighborhood of Sbi where b - 0. For q - n-l. consider to all of R

n 
is completed. The complexity of the pro-

all values b having a single "one" in one of the posi. cedure arises from the large number of possibilities
Sa e , fwhich can arise. A number of such special cases aretions jl.Jn(p.) and for ach , form from the re. illustrated on Figure 2. Evidently, the procedure for

maining n-(p-l)-l indices as above; then SitS; is a extending f is not the only one which could be devised.

o For q n-2, consider all values In the next step, construction of solutions, however.neighborhood of Si oq nit will become apparent that the underlying principle
b having "ones" in any two of the positions jl..... . has been to define f in a manner which preserves all

and from each 6 and i from the remaining trajectories that might arise from each initial con-inp-(P-O nition.
n-(p-l)-Z indices as above; then SgCS€ 

2 
is a neigh- n

h of .Let x etIn be given as the initial condition ofborhood of Sbl. This procedure is continued until qp. (2.1) at t 0 to; let S e S? be %he smallest submani-
The values of f or S CSP-1 are determined fro 0' bi Lfbi b i fold containing . Let b' denote one of the extended

the values of f on each of its neighborhoods Sgr.Sq, fold c on i .x etine

p < q < n. It is thus sufficient to give the procedure bi*

for determining fbi' assuming that these values on X0 +. f (,-t < t (
higher-dimensional submanifolds are known (i.e., the 0 0 0 -< - (3.2)
values can be determined recursively). Define "b to The time t. is defined as foilows: for each . such

be an input submanifold to Sb- if (f6 ), - 0 for all that is nonzero. let (t) denote the first

such that 5 -1, and for all remaining Z in the set s nonzero, l s t n dnte the tJ, . ... .l ) such oha CO o sanitge;thntJl .... in- p-l)'(fS-) < 0 for those I such that > si
it. while (f6 1 ) > 0 for those I such that =n -(tl41 and xl - *(tltoxo). If fbi 0 then

I -1. Define S S to be an output submanifold if tl and x1 - X o and this solution terminates. Oth-

(£-).  0 for all £ such that 1 I, and for all re- erwise, x1 defines new values of b.i, and p, and the

saining I in the set JI- . 'in-(p-l)' (f0bi) 
> 
0 for solution process continues:

those Z such that i L . iE , while (fbi)t ! for those 0(rtkXk) • xk + fbi(T-tk) tk < T < tk+ 1  (3.3)

such that i - i-l. Note that those sets for which
(fU )1 0 0 when G. - I need n be considered. So long

as hW.'set of oa., .sumanfolds of S is non-epty,

is assigned the set of all values fbi on the output

sumanifolds. If the set of output submanifolds is empty. I

Sbi is a generalized sliding surface. Consider fIR on

Si-jCSP in the input set. Itthis set is empty, set

f~i " 0. Recall that S; is formed by keeping i un-

changed in all but one position, say 
1
k' of b, so b -

(b .....,bjk.l 0. bjk.l.....bn) and either i i ori-

ii........-l, Ii i. Thus there are a maximum of

2(n-(p-l)) surfaces in this subset of the input set.
rhese surfaces are considered in pairs to determine the/
adaissable values of ;bv using the example above, if / /

Sbi is in the input set then (E;7 ': : 0 and if S; is
b jk

in the input set (fE) > 0. If both elements are -

members of the input set then

fbi * ((fibdjk % (fdjk 6i/[(fjk ( ijk / !

(3.1)-

while if only one is in the input set, let /

fbi * 0

The set of possible values of fbi on a generalized slid- Figure 2
Ing mede is completed by considering each S;1cS in this Illustration of Nonuniqueness of Solutions
manner. In all such cases, ( bi)Jk; k - 1 .... n-(p-l)

* 1112



On those surfaces where is multivalued, each pos- (a) Bounded in magnitude if there is a constant 0> 0
sibility must be examined in turn; in this sense, * such that

is also multivalued. Each trajectory pieced-together
in this fashion can be summarized by a sequence MaX (sup IIs(t.tX) I <
{xk'tk)

, 
k - 0,1,... in same cases, these sequences oem(t,1 o)  t>t

are finite and in other cases infinite. By inspection
Of (L}b alone, a corresponding sequence of regions ) Bounded in cardinality is there exists a constant

SN such that
(ak} , where ak{SCbi is the minimal submanifold con-

taining xk. can be constructed, sup (cardinality of U(to,x Nt>to0
A solution of (2.1), (2.2) is then defined in the

obvious manner, as any $(t,toxo) constructed by the The concepts of boundedness in magnitude and

continuation procedure (3.3). It has the property that cardinality are independent. In both cases, the only
for any finite admissable k, 0(t,t ,xo) is piecewise difficulties occur at t

-
'
, since (a) any s(r,t o,xo ) is

continuous on [to,t]. This solution by continuation by construction bounded for al! firate t, and (b) the

cardina ity of (tti) is finite, by construction,is said to be asyptotic if l~m tk = . An asymptotic for all finite t. The following propositions are al-

solution is piecewise continuous. For purposes of the most immediate.
present work, a solution will be said to exist if the
state-space continuation is asymptotic.* Asymptotic Proposition 1: In (2.1), suppose I1f .11 < F for
solutions need not be unique, but the rate of growth all , then , - < for all
in the nmber of solutions can be bounded as a function J~

of k, since the maximm number of output submnifolds 0 0(tox)0
can be bounded above for any Sbi If there is only Proof: The extension of fo to f always ga

one asymptotic solution through (x,t), it is said to anteed that < and the bi r-
be unique. Continuous dependence of (tt ,lbill construction procedure

e oe (3.3) guaranteed that the estimate of the proposition
respect to x0 , of course, is not to be expected for held for each t. q.e.d.

t > t V Proposition 2: Let Iii -ii a. .. I' n. Suppose

IV Stability for -ystem (2.1) there exists B > 0 such that for allIii B , and k 1 .. n, (fi)k ik < 0. Then

The usual definitions of stability presuppose a 
Oi(to ,X a ond e k i kagni.ude.

solution which is well-posed in the sense of existence, (t 0 Xd is bounded in magnitude.
uniqueness, and continuous dependence on the initial Proof: For any i such that Iii ) B, every set
data. Diced systems, in general, do not possess the rcoof-" ns output submanifolds with the same tii or
last two properties. One alternative is to neverthe- bi
less use the standard notions of stability, restrict- smaller Iii, and input submanifolds with the same IIi
ing their domain of application to those initial states or larger Jif; further more, S1i always outputs to S
for which the usual notions of well-posedness are ih 01

(locally) stsid Unotntltestfsuh with 1:11 < III. Thus the construction process cannototy)satisfied. Unfortunately, the set of such
initial states appears quite difficult to characterize terminate for 1ij> B, and for such i, il is reduced
and thus imposes an awkward restriction on the appli- at least once every n intervalsB hencefevery lution

cability of this alternative. Satisfies 14(tt 0 ,x0)1 < B for t sufficiently large.
Thus M(to,Xo) is magnitude-bounded.

Another alternative, introduced here, does not 0 0

impose such restrictions, but weakens the notion of Proposition 3: Suppose that for every iCZn,
stability that is employed. Stability is viewed as a bcB'

. 
s has at most one output submanifold. Then the

qualitative property of a trajectory, and a system is bi
then said to be stable when all of its trajectories motion M(t ,x of (2.1),(2.2) is bounded in cardinality.
share this property. 0 0

Proof: The extension procedure of Section III
Definition: The motion of a diced system (2.1), shows that in thit case fbi takes the value on its out-

(2.2) initiated at (tox o) is put submanifold or the value zero. If a trajectory

> .io enters Sb, it either continues uniquely to the output

0 0 0 0 - 0 function i nitiated at subnanifold, or terminates at S bi In either case, the

(toxo)} cardinality of the solution cannot increase during its
0x construction.

%hich is the set of all trajectories originating at Thus there are two notions of instability for
rto X.) diced systems: solutions may become unbounded in mag-

nitude, and/or they may become unbounded in cardinality.
Definition: The motion ll(tox of a diced sys- Thii second form of instability is new:. a trajectory

tem is said to be can fracture and a chain reaction of subsequent frac-
tures nay ensue--the complexity of the process grows

"1oreover if lim tk ' ", solutions by time-continuation "ithout bound.

could be defined; however, their properties will not :.ext, a notion of stahility Ls put forth. Suppose
e explored here. that the motion X(to,xo ) of a diced systen is bounded

in magnitude ano cardinality (or 5impl "bounded").

1113



nA

then a set S C R
n 

consisting of a finite union of the Proposition 4: If the sequence (Xk tk} is finite
submanifolds Sbi is termed a positive limit set of a of length N, the positive-invariant limit set consists
(bounded) trajectory 0(t,t0,x0 ) if for any point xS, of one point, the last value xN (for which tN ' ')'

there exists a sequence of times (Tk}
, 
tending to in- If the sequence (xk,tk} is jointly periodic of period

finity as k-, so that s for k > N, then the positive-invariant limit set is
a cycle (closed curve) in R

n .

Iim )*(TktoX o ) - x( - 0 (4.1)
k Proof: For the first case, note that the con-struc~Ti-'-procedure automatically defines tN = - when
where )( denotes the set-membership metric, i.e., 

if
the sequence is finite, and this implies a constantxcSbi" solution for t > t . In the second case, note that

)y-x( - 0 YESbi since {xk-tki completely specify 0(ttx0 ), must be

periodic tk- tk, k > N, whenever (xktk} is periodic

Y"Sbi (in fact, the solution is a linear interpolation be-
tween these points).

"n applying this definition, it is important to recall
he standing assumption from Section III, that all tra- it is interesting to note that for diced systems,

jectories are asymptotic, so that such sequences fT,) the establishment of an equilibrium or periodic solution
exist. after a finite time (tN) is often to be expected (where-

Definition: A bounded motion M(to,xo) of a diced as this would be considered exceptional in the case of
0 continuous differential equations); however, in some

system is termed I twise stable if all trajectories cases almost periodic solutions may also exist.
Xt t0 x0 ) M((t0 Xo) hve the same positive limit set.

The motion is locally stable for xocbS if all tra- V Discussion and Conclusions

jectories 0(t,t0 X)c M(tox), XESbi, have the same The present account of the stability of diced sys-

positive limit set. The motion Is .eloaULL.stable if tems leaves a number of questions unanswered and raises
all trajctories *(t,tox) have the same positive some new ones. A study of methods for temporal con-
limit set. tinuation of non-asymptotic solutions is needed; such

solutions may represent a new sort of sliding mode
Concepts of uniform stability will not be discus- which can arise in higher dimensional spaces, as sug-

sed since only time-invariant diced systems are con- gested by an example of Utkin (7]. The possibility of
sidered in the present account.* In fact, the eval- extending the techniques developed here to time-varying
uation of stability, according to the definitions given, systems has been mentioned; Filippov's general existence
can be based merely on knowledge of the sequence (a results apply to this problem. A study of the partition-

k in of initial states which is implied by the proposed
of submanifolds containing (x.K, since it is known stability definition would also be fruitful; what prop-
from the construction procedure that t k 1 " tk and from erties are shared by initial state sets giving rise to

the same asymptotic solution? In general, it would
the asymptotic assumption that lim tk * . This 3ug- appear that the initial states within a given region

Sbi can ultimately end up widely dispersed. The pos-
gests that a way to generate the sequence lu 3 auton- b

k sibility of using an automaton to simplify the prop-
mously, without explicit integration and generation of agation of solutions has also been raised. The approx-
(xk.tk} would be particularly valuable in the assess- imation of continuous systems by diced systems has not
met of stability. This has not been achieved yet. been explored, but under appropriate conditions, a

bound on the approximation error should be achievable.

Knowledge of the time-structure {tk} of individualk In spite of the questions that are unanswered,
sotutions can be of further value in refining stability some modest progress has been made toward defining the
notions. To simplify the remaining concepts it is now stability properties of diced systems. First, a con-
assumed that the trajectories are uniquely-defined structive continuation procedure for higher dimensions
(e.g., as occurs in Proposition 3) and bounded. Sup- has been found; the problem readily evades one's intu-
pose R is a positive limit set of such a solution in ition above n - 1,2 and even 3 as endless combinations
the conventional sense of Section II (eq. (2.S)). Then of difficult situations may occur. Second, a compromise
in the usual manner it can be shown that 11 is bounded, on the issue of uniqueness has been put forth: the num-
closed, non-empty and invariant, the last property be- ber of admissable solutions at any finite time is
ing a consequence of time-invariance. In fact, as a bounded. Third, the concepts of stability have been
consequence of finite-dimensionality of R

n
, all such generalized to provide meaningful criteria for discon-

solutions are asymptotically almost-periodic [61. Two tinuous systems of diced type.
cases of special interest are the asymptotically con-
stant (equilibrium) solution and the asymptotically Returning to the electric power system example
periodic solution. These can be identified directly cited in the opening section, it would apnear that the
from the sequence (xk,tk) characttri:4ng t(t,.t ) . implications of the research might be very disturbing,f or two primary reasons. First. a new type of insta-

bility--an unbounded growth in the number of possible
solutions with time--has been identified. Second, and

The results could be extended in this direction for sys- independently, the partitioning of the initial state--
tems with continuous time-variation; however discon- at least in worst-case situations--based on asymptotic
tinuously time-varying systems may not be continuable, properties, appears to be very fine and irregular; thus
as Filippov pointed out. a small perturbation in the initial state may give rise

to completely different asymptotic behavior than is



found for the unperturbed initial state. Both of these

phenomena imply that the future behavior of a diced

system with a (approximately) specified initial statemay be fundmetally unprdictable; if the long-term
* ~future co nseuecs of a present control policy are

unpredictable, the problem of choosing the best policy
becomes more difficult and planning must be done with

* a shorter horizon.

Ref erences

with Discontinuous Right-Hand Sides," Amer. Math.

Soc. Trans., Ser. 2, Vol. 42, pp. 199-231.

[2) Willems, J.L. (1970), Stability Theory of Dynam-
ical Systems, Nelson &nd Sons, Ltd., London.

[31 Wang. P.K.C., [1968, "A Method for Approximating
Dynamical Process by Finite-State Systems," Int.
J. Control, Vol. 8, No. 3, pp. 28S-296.

(4] Ewart, D.N., "Whys and Wherefores of Power Sys-
tem Blackouts," IEEE Spectrum, April 1968, pp. 36-
41.

[S] Millems, J.C. and S.K. Mitter [19711, "Control-
lability, Pole Allocation and State Reconstruc-

tion," IEEE Trans. Auto. Control. Vol. AC-16,
No. 6. pp. 582-595.

(61 Dferemos, C.M. (1974J. "Semiflows Associated with

Compact and Uniform Processes," Math. Sys. Theory,
Vol. 8, No. 2.

[7] Utkin, V.1. (19781, Sliding Modes and Their Ap-
plication in Variable Structure Systems, Mir
PublIishers, Moscow.

1115



-uz-:ted to 2Cth 7EEE Conference on Decision and Control, San Diego, Ca. Dec. 1961 -

20th CDC
Appendix D LIDS-P-1085

Analytic Models of Multitask Processes*

Timothy L. Johnson

Lecturer Senior Scientist
Department of Electrical Bolt, Beranek and Newman, Inc.
Engineering & Computer Science 50 Moulton Street
M.I.T., Rm. 35-205B Cambridge, Mass. 02238
Cambridge, Mass. 02139

Abstract

Asynchronous multitask processes occur in a wide variety of control

applications ranging from industrial control to computer operating systems,

yet no analytical methods are available for studying their detailed behavior.

The preliminary results reported here illustrate that a very general class

of such processes can be represented by discontinuous hybrid-state discrete-

time systems.
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Sac. ground and Mjotivation

A multitask process is characterized by a number of tasks which operate

concurrently or sequentially, on an external resource or data base. The

timing of the tasks is generally asynchronous in that new task execution

is initiated by the completion of previous tasks. If necessary, synchrony

and sequential ordering of tasks can be enforced in a number of ways through

the task definitions themselves. However in this research no such constraints

are imposed: rather, the general qualitative behaviors which may arise in

such systems are analyzed. Only two basic assumptions are imposed: (I) a

task requires a finite amount of time and storage to execute, and (2) task

descriptions are fixed, in that the execution of a task cannot alter its

own nature nor the number or nature of any other tasks.

The range of possible behavior of such systems is so large that the

problem of conceptualizing, analyzing and "debugging" multitask processes

is very common and enormously complex. Two approaches are presently in

use: stochastic queueing analysis [1],[2] and simulation [3],[4]. Queue-

ing analysis is most useful for evaluating the average performance properties

of an operational multitasking system, while simulation allows certain un-

desirable properties of a planned system to be discovered and corrected

during the design process. Neither of these methods provides very much

insight about generic problems in the design of such systems, nor do they

provide ideas about how to remedy or detect flaws. The results reported

here constitute a modest step in that direction.

Model Development

Let tc[to,0) denote time. Three sets of state variables will be

identified:

4.
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1

x - those states which vary continuously with time and take on real

values.

x - those states which are real-valued but change only at discrete

instants of time

3
x - those states which are discrete-valued and (necessarily) change

only at discrete instants of time.

The state set is denoted X = IX ,X ,}X . For present purposes, it will be

assumed that these sub sets of states are finite-dimensional and recognizable;

an example will be provided below. Let the increasing sequence {tk} denote

the set of all values of t for which changes in at least one element of x 2

3
or x occur, and let the values of the states prior to and following tk be

- .4. .4.

1 1 1
denoted xk , , respectively, for i = 1,2,3. In the sequel, xk will be

identified withx -

The instants {tk} will be identified with task initiation or termination

times. Let the set of tasks in the system be denoted G ={G1 . . .Gn. Associated

with each task is an iniation function, a termination function and a state-

1
update function :

g.: X {0,} - initiation function for task j
T

g.: X {0,} - termination function for task j
3

f.: X X - state-update function for task j3

Each task is either "on" or "off": let G denote those tasks which are "on"

and G denote those which are off, so that G = G U G and GuG =  (the null

set). The subscript j will be used to denote tasks which are "on" and J

o simplify this exposition, these are assumed to be time-invariant; how-

-%er, this assumption may be relaxed.
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to denote tasks which are "off". The task succession rule is as follows:

A transition time, tk, is declared whenever

N/' 11 23
(a) For some jE{j}, g (x ,x ,x ) undergoes a 0-1 transition

or

(b) For some ji{j}, g(x ,x 2,x 3 ) undergoes a 0-4 transition

Between task transition times, only the states x can change, according to

a state equation

x(t) = f(xl(t),xkx ) 1

with x(tk) = xk At the completion time tk of a task j, the transformation
1 completionftimettoo

1+ l
1 ~ 1-

Xk Xk _
2 = 2- (2)

X'k Xk J
3+ x 3-; xk

Xk k

2- + 3- 3+

is applied, with xk  = xk 1 and xk  Xk_ 1

At a transition time, it is possible that more than one task terminates

and/or more than one task is initiated. This produces an inherent conflict

situation which must be resolved in a consistent manner. For instance, if

tasks j and j2 terminate together, it is not necessarily true that

f j o f = fj2 o f (functional composition may not be commutative). Or

if task j is initiated when j2 terminates, then up-dating with fj2 may

turn off j1 , while terminating jI may turn on j, again, etc. In this pre-

liminary abstract, it will be assumed that

there is a fixed priority among task completions (e.g. 1 > 2 > 3 >

j> .. >n)



i

all completions are performed first according to priority, and then

initiation functions are re-evaluated to redetermine which tasks (if

any) should be initiated at the transition times.

Other conflict-resolution methods, such as imposed sequential orderings, are

also possible.

Let Ek 2n be the set of tasks active at tk. Let the transition map-

ping of (1) be given by : [0,.)x X X , so that the solution of

;1 123 1

(t) = f(xl,xKXK) ; (tk) xk (3)

is

1 1 2 3x (t) = t-tk,x XkX k )  (4)

2 3 2n +
where XkXk are viewed as parameters. Define the function T: 2 x X --R

to be the first transition-time encountered with processes j C2 active at

t = to, with initial state x = (x ,x ,x )cX. This can be tabulated by

integrating (1) and applying rules (a) and (b). Let the function

G: 2n x X - 2n define the next set of active tasks, determined from the

preceding priority rules, at the transition time defined by In other

.,;ords,

tk+1 : tk + tJk,xk,xk,x) (5)

1 2 3 (6)Jk+l (jk'xk'xk'xk)

The important point to observe is that, in principle, it is not necessary

to include the continuous-time part of the dynamics, since r and a can be

I Tpre-computed from f, {g-}, and {gT}.

In summary, the dynamics of the asynchonous multitask system can always

be rcpresented in the form
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tk+l = tk - T(jk,Xk)

(X(7)
Xkl= f? k ) (7)

Jk+l (Jk Xk)

where f- is the composition, according to priority, of the transitioni k
functions (2) of the tasks completing at tk+l . It is then clear that tk+ 1

may be combined with x and x and that x may be combined with j to yield

a general discontinuous hybrid discrete-time system. Extensions to stochastic

behavior of f,{f.}, {g.} and {g.} are readily accomodated.

Qualitative Properties

The finite-state part of (7) may be further aggregated to produce an

equivalent real-state discrete-time system with discontinuous transition

function. Systems of this general class have been discussed by Johnson [5]

and Kaliski and Lemone [6]. Their behavior may roughly approximate the

behavior of discontinuous systems discussed in Utkin [7] and Johnson [8].

The pertinent properties of such systems will be described more fully in the

final version of this paper. Here it is merely noted that problems may

arise if lim tk is finite. A possible behavior in this situation is an
k-

approximation to sliding mode behavior, which is closely akin to the

phenomenon of "thrashing" observed in heavily-loaded multitasking systems.

Examples

Realistic examples will be provided in the conference version of this

paper.
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Multitask Control of Distributed Processes

T.L. Johnson*

Abstract

As one class of real-time operating system, multitask

systems are widely used in distributed process control

applications. The evolution of tasks in such systems may depend

on the dynamic response of the controlled process and on task

* completion times. Under certain assumptions, it is shown that

the dynamic evolution of such feedback systems can be modelled

by a finite-dimensional discrete-time hybrid-state dynamic

,1 system. An example of a thermal control system is given.
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I. Introduction

The design of real-time computer control systems for

distributed processes has been hampered by the lack of adequate
a

analysis tools. Since the evolution of state in such systems

depends on the timing of process events as well as computing

tasks (and not just the sequence of completed tasks), conventional

finite-state or differential-equation models are inadequate to

predict details of task coordination and sequencing which are

critical for design purposes. For multitask systems, a class

of hybrid-state discrete-time models is shown to be applicable

to this problem; other real-time operating systems may require

more general models (Gonzalez, 1977).

Even for relatively simple systems, the analysis of timing

is complex. An example of a furnace temperature controller

with overheat protection is given to illustrate this fact.

Qualitative properties of hybrid systems of this class

have been studied in Sontag (1981), Johnson (1980). Some I
design methods are described in Vidal (1969). General controller

synthesis methods are not yet available for such systems.

I
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The transition between tasks may depend on the values of

continuous or discrete process variables, and it is the dynamics

of the joint process that is of interest. Let tE (t. ) denote

time. The state set X={x 1,x2} is the product space of XI=

(those states which are discrete-valued, including all discrete |

memory states}, and X2 = {those states which vary continuously

with time and take on real values}. Let the set of tasks in

the system be denoted G={G 1 ... ,Gn Associated with each taskn

is a task initiation function gj: X-f{,1},a task termination
fucinT f. : XxX X"

function g.T: X-{0,1}, and a state update function f3

Each task is either "on", or "off". Let ql={qi}.qlc2n denote
n

11those tasks which are "on", i.e. q 1 hntskji o"

q.=0 when it is "off". A task transition time, tK, is declared

whenever
n n

T=[V (gjAqj) ]V[V (gjAqj)] (1)
j=l j=l

makes a 0-1 transition, i.e., an inactive task is initiated or

an active task is terminated. Between task transition times,

the states in X are assumed to be constant*, and the states

in X2 are assumed to evolve according to a time-invariant

differential equation

.2 (t) = f(x 2(t),x (tK ) )  t [t Itk+ I ) (2)

where f is assumed to be uniformly Lipschitz continuous on X
2

for each xl .X I . Let 0: [0,--)x X-X be the transition mapping

of (2), defined for each x1rX I such that the solution of (2)
1i. 1 2- 2with initial data x1=X (t ),Xk=x (t ) is

*This assumption can be relaxed by introducinq additional
transition times for spontaneous discrete-state transitions,
if desired. The assumption is satisfied, for instance, when there
are .o discrete-state memory devices external to the computer
memory, and when only the task scheduler is allowed to chanqe
the memory states x 1 .



The task state-update functions f must thus take as their

arguments the state at time of task initiation and at time of

task completion; these functions are composed with one another in

order of completion priority*. The convention qk ,qk 2 )

Xk= (Xk ,Xk2 )' has been used in (6). Rephrasing (4)-(5) and

defining the state of the combined process as

1
Xr (X k

x ; Xk (Xk) (7)2 12(X k)

:1 t (Xk)

1 2 1 2
where n and n denote the projection of n onto X and X

respectively, and the arguments of n,o and T appear as subsets of

the elements xk, respectively.

The well-posedness of this model depends on existence and a

uniqueness of solutions to (2), for which sufficient conditions

have been stated, and also on the property lim tk= In some cases,

this limit may be achieved for finite k, which is acceptable; in

others, limtk may be finite, which is not. The latter case may
k -- k

be prevented by placing a positive lower bound on the range of

the function (e.g., related to the cycle time of task scheduler).

III. Example

The temperature control of a room by a furnace which is

subject to overheating is considered. The room is equipped with

a temperature sensor and the combustion chamber is equipped with

The definition of "priority" is a question of semantics; the
task which has highest termination priority may have its results
overwritten by lower-priority tasks which complete afterward,
according to the convention adopted here.

h -- - ... p~
i



sequencing of tasks alternate between j=l and j=2, but the

sequences j=l,2,3 and j=l,3 are also possible, depending on the

parameters of the continuous system. Since the task computations

are so simple, it is assumed in this example that they are

completed instantaneously.

Suppose that the dynamics of the room temperature, R,

are given by

R=-aIR+a IF+6 1 (8)

where

a1 = inverse of room thermal time constant (min.)

81 = heat capacity of furnace

61 = constant depending on ambient temperature

The dynamics of the combustion chamber temperature, C, are

givnn by

C = C+3F+6 (9)

where

2 inverse of combustion chamber thermal time constant(min.)

3 2 = heat capacity of combustion process

62 = constant depending on ambient temperature.

Obviously, more complex distributed-parameter or nonlinear

radiation models could be chosen in place of (8)-(9). The room-

temperature setpoint is denoted by R (implemented in the

computer), while the overheat setpoint is denoted by C. Define

the threshold function

_- W X>x (10)

x to X<X

The dynamics of the timers are given by

-7-



In order to define the functions T and aj(eq.(3), (4)) of the

model, note that the transition function for (8) can be written
-ci (t-t)

R (t) = +F) /olI +e -1 k)[R(tk)-(61+B1F)/l] (17)

and an analogous expression is obtained for C(t).

Since all tasks complete in zero time, it may be assumed

that qk={000} in (4). Suppose that F=0. Then only Task 1 can I
be initiated next, and the time for this to occur is

max(DI,D 2 ) T1 AT 2=1, M=

-r(O,O,x2 )= D1 1 D2 ) TT 1  M (18)

0; T1 AT2=0, M=0

D ; TAT2 =0, M=1

where

Do  (i/l)Zn L- 1 ] (19)

is the time for room temperature, R, to cool to R if R>R, found

I from (17).

If F=l, then either Task 2 or Task 3 may occur first,

depending on the parameters of the problem and the value of

the states R and C in x2 (since TI=O,T 2=0 are required when F=1).

The time for R to reach P when R<R<(6 1 +81 )/ a1 is

rR-(6 1+ 1 /a1
D2 = (1/a)Zn . (20)

And the time for C to reach C when C<C<(6 2 +B2 )/J 2 is

D3 = (i/a 2n (222j (21)

i~~~ 2 ..... ,........ ....



In this case, the order of invoking the tasks 
is immaterial so

that (6) does not depend on task priority. Mutual exclusion of

the tasks could be represented, if desired, by modifying the

state x to include status information corresponding to q k
In addition to illustrating the application of this modelling

procedure, the example has been concoted to illustrate the

versatility of conditions which can be represented by the multitask

formalism.

IV. Conclusion

The salient assumptions of this modelling procedure are: I
(1) the number of tasks is fixed and finite, (2) tasks cannot

modify their own computations, (3) bounds on completion times

of each task are known, (4) tasks are assigned fixed priorities,

(5) the time scale of the task scheduler is much faster than

the process time scale of interest in the model. While many

multitasking systems are conceptualized in a more general manner

which violates one or more of these assumptions, it is often

possible (with some inconvenience) to represent them in a form

which satisfies these constraints through appropriate choice of

state variables.

Finally, an important objective of this paper is to

illustrate conclusively that traditional infinite-dimensional

continuous process control systems are very inadequate for the

representation of typical computer-controlled processes, and

that substantial further research in this area is required.

-11l
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INTRODUCTION trajectory by a "teaching" procedure (e.g.,
Unimation, Inc., 1979). The trajectory

A variety of control problems arising from recorded during this procedure is then
robotics applications can be restated as "played-back" as a sequence of position con-
optimal control problems of minimum-time mends to joints which are servo-actuated; the
state transfer in the presence of state-space rate of playback may be increased in a

constraints and constraints of incomplete- sequence of preliminary trials, until the
state information. The traditional approach- bandwidth or power limitations of the servos
es to solving such problems are Pontryagin's are encountered. This methodology is relativ-
Maximum Principle (Pontryagin et.al., 1962), ely quick, intuitive, and yields reliable
in the case of open-loop control, and performance when the disturbances to the
Bellman's Dynamic Programming method (Bell- robot and workspace are relatively small.

man, 1957). While a number of technical Although this state-of-the-art approach to
difficulties exist, approximate solutions of trajectory formation is very effective, it
such problems can generally be computed off- possesses inherent limitations and is already
line (see Kahn and Roth, 1971). Perturbation being superceded in more demanding applica-
methods for obtaining local feedback laws are tions such as locomotion and manipulation.
also available (Whitney, 1972, Hemami, 1980). One limitation is that a human controller

cannot readily communicate commands to such a

However, no currently operational robots are robot. The robot is also unable to anticipate
known to be based on solutions of such optimal or accommodate unexpected changes in work-
control problems, nor is it likely that this space configuration; the teaching paradigm

will come about. Some of the reasons for cannot be readily extended to allow for feed-
this situation can be given: (a) complete back from additional sensors (e.g., touch or
equations of notion are extremely complex, and machine vision). The objective of the present
are often not available; (b) trajectories note in to extend and affirm the suggestion
must usually be planned in a short time-period of Young (1978) that discontinuous feedback
preceding execution--there is no time for laws are naturally-suited to robotics problems.
detailed design studies or numerical analysis t6 describe two further examples of discontin-
for every motion being performed; (c) rells- uous feedback laws, and to explore further
bility and repeatability or accuracy of motion notions for the synthesis of such systems.
are often more important than minimizing
execution time; (d) optimal control laws Rationale for Discontinuous Feedback Laws
often require too much storage or real-time
computation during execution of the motion; Accepting the fact that optimal feedback laws
(e) nonlinearities are often sufficiently for this class of problems generically exhibit

severe that local linearization gives poor discontinuous behavior (Athens and Falb, 1966.
results (even if its heavy computational re- Kahn and Roth, 1971), one is motivated to
quirements are overlooked), seek simpler methods of determining loci of

discontinuity. The theory of variable-

By contrast, current practice is often to structure controllers, developed originally
determine a feasible open-loop position by Emel'yanov (1967) and extended by his

colleagues (see Utkin, 1978) has provided new
of this research have been performed design methods for certain classes of systems;

ortions otit is a remarkable observation that the
at the MIT Laboratory for Information and Dec- performance of such systems can be qualita-
Ision Systems with support provided by the! l l on Sy st m w th s p po t pr vid d by thetively quite robust, even though their pre-

U.S. Air Force Office of Scientific Research t
Contract No. F49620-80-C-0002. cise trajectories may depend strongly on the

under oinitial state, disturbances, or modelling
errors (Young, 1978).
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The author has previously suggested (Johnson, Suppose that t is the first time of contact
1978) that there is a close relationship of I-

this theory and the theory of control laws between ball and hand, and let t1 denote a

described in linguistic terms, e.g., as a time just prior to t while t denotes a time
digital computer program (Zadeh, 1973). 1 1

Example 1, in the sequel, exhibits this rela- just after tI Assuming f MtW is approximately

tionship. Discontinuous control in robotics constant on the interval (t 1 ,t), it can be

applications can thus arise from the nature
of the task description as well as from dis- set to zero without affecting the conclusions

continuities in the mechanical system and of the following analysis; this is done for

environment, as illustrated by Example 2. A simplicity in the sequel. Either an elastic

third reason for developing discontinuous or inelastic collision may occur at If an
controls arises from implementation considera- inelastic collision occurs, and the ball is
tions. Discrete sensors and actuators are caught, the combined dynamics for t>t 1 are
usually cheaper and more reliable than con-

tinuOus ones; they arise naturally in discon- (14m' - -(H+)g + f(); () -

tinuous control law synthesis. Discrete z t m

signals are also preferred for signalling t>t
task initiation, completion, or interrupts to )

I

a control computer. Finally, digital comput- zd(tl) M , zl. tel at
ers typically perform binary operations faster -(tl)  impact

than (approximations to) real number opera- " (3)

tions.

If an elastic collision occurs, 
then

The following two examples illustrate the use ..

discrete feedback control in two very simpli- az I -- g, z Ct 1 ) a z z t) 
fiLed problem arising in robotics, which lie m m 1 m 1

just beyond the current state-of-the-art. ZM - -Hg + f(r); zM(t I ) - z -
Since a general design theory for such cases
is not yet available, each example is solved im(t 1 ) - ?

on its own merits. (4)
Ex l :Conservation of energy and momentum can be

invoked (now taking f (t)-O) n order to
In this example, the "hand" is idealized as deduce which of these situations will occur,

a cup-shaped weight of mass M which can be and to find the missing velocites at t-t I .
acted on by vertical and horizontal forces in Conservation of momentum is
order to catch a (vertically) falling ball of +
mass M. First, it is assumed that the hand is p - am (t-) + CM(t-) - m; (t + i(t,)

beneath the ball and the interception dynamics ( 1 s 1 a 1

are analyzed. Then, a simple control law to

achieve catching from an arbitrary initial while conservation of energy(omitting potential
position, using remote sensing of the position energy, which is approximately constant, from
of the bell (a primitive form of vision), is both sides of the equation) is

given in algorithmic form. .: . -
2  

. - 2 _ .2
The geometry of the problem is shown in Figure • 4 2

1. Suppose that xm(t) - xM(t) - 0 to analyze MzM(tl) (6)

the catching process. According to Newtonianthe atcing rocss. ccodinsto evtoien Viewing theme as simultaneous equations for

mechanics, the ball's motion is given approxi- i
Uately2 by £t(t )and bouncing is predicted whenmatel

2 
bySm~t ) a t ,~

1 +. + 3.

m -as ; z(t) z ; n (to)-0 (1) there is a solution with (Ct
4. 
1 + .

A simultaneous solution yields the possibili-

where g is the acceleration due to gravity and ties

2 is the initial position of the ball at to, 2 1/220 0 (t+) - (?+jmM(E(M+u)-P )] /}(M+u) (7)

the time it is dropped. The motion of the m (

hand is given by As a special case, suppose that i(t 1 )0, i.e.,

- -M + rz(t); y(tO) - zMo; !M(to)'O the hand is at rest at the time of impact.
(2) Then it can be shown that a real-valued

where f (t) represents the control force, solution of (7) always exists and that

3
Otherwise, in an inelastic collision, energy

2
In air, a viscous drag force depending on dissipation will occur at t I so that the physi-

cross-sectional area is also present, and +1
could be used in estimating the ball's mass. c r s
This digression is not pursued here. about. This is not explored further here.



=M a 1(8) UNTIL z(t) zM(t) + EZm -l (m+!i) z,(c) 8-z

Thus bouncing will occur whenever M>m, which IF jz (t)-z(t)c< Ez AD A JxM( c)X (t)I< E.
is typically the case. A further analysis M m

shows that if M>m, a finite negative velocity THEN RETURNof the had prior to impact (; (t )40) Will
o t - ELSE (MISSED THE BALL, GO TO ERROR

prevent bouncing; in the limit mO,z M (tl)= RECOVERY]

(t), i.e., perfect tracking will be re- END

quired; if the ball is very heavy (m>M), or
4. has a very large velocity at impact, then a The first REPEAT loop uses position feedback

catch can be made even if z(tl) is positive, on the x-position error (intended with a
'M ti "large" gain K xi ) to bring the hand below

i.e., if the hand comes to meet it. Typically,
one expects m4 but not m<< M, so that a very the ball as fast as possible. The second
small movmnt to produce a slightly negative REPEAT loop uses integral control on the

hand velocity prior to impact will ensure a x-error to more accurately position the hand

successful catch. below the ball, and derivative feedback on
the z-velocity error (intended with a "small"

In a catch, the hand must merely intercept gain. K) so that the hand has a small down-

the bell's predicted trajectory before the ward velocity when the ball strikes it.
ball arrives at the point of interception, Although the details of this control law are

and then wait to make a small final maneuver essentially irrelevant, It is primarily in-
to avoid bouncing. If the ball is to be tended to illustrate two points: (a) it is
struck, (say, in the x-direction) quite a not necessary to explicitly predict the trai-

different strategy is required: The ball's ectory of the ball (i.e., to preplan the
trajectory must be intercepted precisely at trajectory) or to know the precise mass of
the time the ball reaches the interception the ball; (b) The control strategy is dis-
point, with a velocity which is approximately continuous at the time between the two
perpendicular to the trajectory. REPEAT loops, which is determined by the

motion of the ball itself. In the second
Now suppose that the ball's position, a(t), example, the control law discontinuity arises

z(t) can be measured, that the hand position primarily from state-variable constraints
rather than from the task description.

IH(t), zM(t) is available from internal meas-

urement, and that forces f x(t) and f z(t) can Example 2: Converting Vertical Force toI Z Horizontal Locomotion
be applied independently. Assume that accur-
ate velocity estimates can be obtained from A single massless link of length Z0 terminated

the position measurements. At t-to0 the the upper end by a mass al andat th pe n yams 1 adat the lower

initial time, suppose zm(to)-zmo, x(to ).O ,  end by a mass o, is considered in the example
while z=( o  - o=e t)- A~,

whileza(to0) - Zme (to) -Mo A(Figure 2). A vertical force, F(t), may be
simple implementation of the rendezvous applied to the upper muss: When this force
strategy for catching the ball is the follow- lifts the link above a horizontal surface at
ing pseudo-Pascal algorithm: z-0, it is free to swing back and forth in

one direction (defined as the x-direction);
PROCEDURE CATCH when mass m0 is in contact with the surface.

BEGIN it "sticks" unless an upward vertical force
component is subsequently applied to it. This

REPEAT assumption approximates the effect of a

fz t) - 0 friction contact between m0 and the surface.

e (t) - xM(t)-xm(t) The intriguing feature of this example is
that there exist simple strategies whereby

f Ct) = -Kxe xt) the purely vertical force F(t) can be used to

UNTIL Ie(t)I<Ex  propel the link in a forward horizontal
motion. These result from a proper combina-

1 -0 tion of two motions:
x F: The link falls down (like an inverted

REPEAT pendulum) when m0 is on the surface and

fzM(t) * "K5(zN~t)'am(t))no vertical force is applied (F(t)-O).

eW(t) N(t)-(t) S: The link swings back and forth in a stable

Ix + As (t) pendulum motion when a0 is off the surf-
ix i s ace and a vertical force is applied to

1( is the sampling interval] counteract gravity (F(t)>(m0+m1 )g).fzx W -K



The equations of motion are first derived Case F: Let FO0 and F be defined as in
in the two cases where a is not in contact
with the surface z-O (Ca

2
e S), and then when Case S. During Case F, it is assumed that

it is in contact (case F). (x0z0) remain fixed at their initial values,

and that z0-0. Newton's equations for m1 are
Case S: Let 01 denote the force on m0  " F - - 1 0sin80

exerted through the link by mi , and F (18)

denote the force on 1 exerted by nO, defined m x1 - -Fl cose0 (19)

in the direction of the link for each mass. In differentiating the constraints (13) and
Newton's equations for m0 are (14), x0 and z0 are held constant. The

MA - - 0 Og+Polsin 0  (9) equation for e 0 is derived in a similar

U05 0 " FOlC °S -
(10) fashion to Case S:

And for a1 they are 80= Fcose0 /mI 0 - gcoSO0/90  (20)

m - F - - F0sin80 (11) Since x0 and z are fixed, (x1,z1 ) could be
found directly from the algebraic constraints

mixI = -F10cose0  (12) once (20) was solved. Rowever, differential

expressions analogous to (16) and (17) are

where g denotes the acceleration due to more useful for guidance purposes:
gravity. The constraint of equal and oppo-
site reactions (rigid link) is F oF 0o. The l 0 (0 02 + gsin00)COB0 - F0in0com0/ 1

link imposes constraints between (xoz 0 ) and 0 (21)

(x1,Z1 ) which are most readily expressed in z= (_0 02 + gsin80)sine 0 g-Fcos
2
8 0/m 1

terms of e0 :
(22)

x1 .x 0 +Lcos (13) As expected, (20)-(22) do not depend on MO ,
and because m0 doesn't move in Case F.

Z o z0 + l08ine0 (14) Feedback law: Only the most simple form of

The time-derivatives of the constraints are feedback control strategy is described here,

used because the constraints must hold a and it is shown that feedback from only 60

each instant of time. Elementary algebra and 80. as illustrated by the solid feedback

and trigonometry can be used to solve for line of Figure 3. is sufficient to provide

101 and F110 in (9) and (10). Further the features of useful locomotion described

algebra yields the key equation for 8: above. The discontinuous feedback law is

most readily illustrated on the phase-plane
c0 - co/. o  (15) plot of o 0V. 60 of Figure 4.

In this example it is natural to assume that The feedback law is:
inertial measurements could be made only on
i. and thus it is of interest to have Whenever (80 (t),8 0 (t)) in Regions A,E or F

equations of motion directly in terms of the take (t - 0

inertially measured states (xl,zI) rather

than (x 0 zo). These equations are: Whenever (60 (t),6 0(t)) in Regions 1,C or D

;1 . ( O( 0 +ul))cose 0 80
2 " take F(t) - (mO+al )g

(m0 /ml (m0+m 1))sin8 0cos 0F (16) For any initial condition inside the shaded
area except the point (w/2,0)4 . the motion
of the system will eventually settle into a

z " _(m0L0/(A0mi ))sin
8 0 2 - g periodic motion. Initial conditions outside

the shaded regions cannot be corrected by this

+(cos 2 %/0/1+sin2%0/(, 0+ )]F (17) feedback law. Disturbances such as variation
in surface height, friction, etc., result in

Purely algebraic constraints (13)-(14) can be perturbations to the trajectory, which are
used to find and to check that sstable if the system remains inside the shaded

(ozo) aregion. Thus, one goal of accommodating small

zo>0; otherwise a transition to Case F may

occur. Furthermore, note that (16), the fore- Certain additional constraints and assump-

ward acceleration of m1 . is driven by the tions, which may slightly decrease the size of
this area, have been intentionally ignored in

vertical force F, providing the possibility this simplified analysis.

of locomotion.



obstacles has been met. A second goal, of control strategies and the choice of switch-

varying the speed of locomotion, can be met ing loci defined by intersections of natural
by varying emin parametrically. The time per motions of the system under these candidate

control laws appear to be primary requirementscycle is roughly related to the area enclosed for a practical design theory of discontinu-

by the periodic trajectory, while the horiz- frapatcldsg hoyo icniu
ontal distance ia approximately e - ) ous control for robotic systems. Presently,

0 max min the greatest difficulties in the development
the ratio of distance to time Is an approx- of such a theory are the relationship of
imate measure of average forward velocity, linguistically-described goals to feedback

The range of achievable velocities with this law selection, the lack of analytic methods
locomotion strategy is rather small, even for characterizing controlled motions of the
tnough the corresponding range of step sizes system, and the inherent difficulties of
(between 0 and 2L0) is rather large. The stability analysis for discontinuous systems

margin of stability of the larger step sizes (Johnson, 1980).

is considerably decreased, however.
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Appendix G

Essentially Continuous Functional Real Coders

1. Let FTo T > 0 be the set of all piecewise uniformly continuous maps,

with a finite number of pieces from [0,T) ) R.

For fcFT geFT2 we define an operation * as follows1 2I
g*f(x) = f(x) if xe[O,T1 )

g(X-T1 ) if xe[TI,T +T
1'2

It is clear that g*f is in F T+T and thus F = U FT is closed under

1 2 T>0

Let D : F -) R be a given map. We call $ a functional real coder. In

the sequel we examine certain properties of such coders.

Let use define the relation ; on F by

V heFT

D(h*f) = $(h*g)

Clearly $ is a right-congruence relation. We say that $ is unitary if

F/ $ has but one class: otherwise we call $ finitary, if has finite

index, or non-finitary if it does not. We focus on unitary coders below.

2. Characterizing Unitary Coders

Suppose D is unitary. We would like to see if we can find a simple

characterization of $. We first begin with an elementary but, nonetheless,

important theorem.



Theorem: If fEFT then lim f(t) is defined. We call this value f(T).
t T

Proof: A uniformly continuous map on an interval of the form [a,8) has a

uniformly continuous extension to [a,O]. Since f has only finitely many
A . A

pieces 3 T < T such that f is uniformly continuous on [T,T]. The result

follows. QED

3. We next define a concept of fundamental importance for coders--essential

continuity.

Definition: 0 is essentially continuous (e.c.) if the following condition

is true: V E > 0,3 > 0 s.t. f FTI qeF T, ! T2

(1) If(x)-g(x)I < 6 for all x[O,T1 )

(2) lg(x)-g(T 1)1 < 6 for all xE[T1,T2)

and (3) IT2 -Tll < 6

then 10(f)-p(g)I < C a

Let us restrict our attention to essentially continuous maps 0. Suppose,

now, that 4 is unitary. Let f£FT be arbitrary. We would like to argue
A

that O(f) is completely determined by f(T). Specifically if gcF^, T > T
AT

and g(T) = f(T) we would like to prove that 0(f) = O(g). How?

Let e > 0 be arbitrary. By the uniform continuity (piecewise) of f,
A

extended to [0,T] and g, extended to [0,T] we argue as follows. Let 6

be the 6 associated with c by virture of the essential continuity of P.

I > 0 s.t. for all xe[T-p1 ,T), jf(x)-f(T)I < 6/2. Similarly j 02 > 0
AA A

s.t. for all x[T-o2,T), 2g(x)-g(T)I • Let = mi (o 1 ,P 2 ). Let

!I



E

us define another map hEfT as follows

h(x) -- { g(x) if xE[O,T-p)

g (T-T+x) if xE[T-P,T)

Note that h is well-defined and is in fT"

Note that

(1) For xE[T-p,T), lh(x)-f(x)I _I 6

(p: lh(x)-f(x)l < jh(x)-g(T) l
AA

+ jg(T)-f(T)l + lf(x)-f(T)j. With g(T) = f(T), we have

lh(x)-f(x)l :S jh(x)-g(T)l + lf(x)-f(T)l

Now let y = T-T+x. Note that yE[T-p,T) and that h(x) = g(y). So
A

lh(x)-f(x)l < g(y)-g(T)j + If(x)-f(T)I

As p_< Pl and p < P2 it follows that

lh(x)-f(x)l < 6/2 + 6/2 = 6 QED)

(2) By the essentially continuous nature of D, then
10 (h) - ¢(f) I <

(3) Define qeF by

p

q(z) = g(T-P+ z)

Note that if we write f as the restriction of f to [0,T-p) and g

as the restriction of g to [0,T- ) then

~gq*g

(Pf: First for h. If xc[O,T-p) q * f(x) - f(x) = f(x) = h(x).



If xc[T-p,T) then q*f(x) = q(x-(T-p) = g(T-T+x) = h(x). Similarly

for q. If xc[0,T-p) then q*q(x) = q(x) = q(x). If xc[T-p,T) then

q*q(x) = q(x-(T-p)) = g(x). QED)

(4) As D is initary, f = q. So 4(h) =D(g)

(5) Thus by 2 , 1,(g)-4(f) < c

As e is arbitrary, t(g) = t(f). We summarize this by

Theorem: If 0 is unitary and essentially continuous and fEFTo gEFj, T > T,

with f(T) = g(T), then

0(f) =- (g)

Corollary: Under the above assumption - e:R - R s.t. V feFT ,  (f) e(f(T)).

Proof: Clear, ( only depends upon the value of f(T). QED

Note how, with the condition of essential continuity we have generalized

the "sequence" coders earlier studied.

4. For this reason we may view a unitary D (e.c.) as memoryless. We

seek a unitary (, non essentially continuous, that is not memoryless

to show the necessity of essential continuity in the above proof.

Let ACF be defined by: fEFT is in A iff 36 > O, 6 < T, such that f(x) -0

for Vex [T-6,T).

Define $ by $(f) = r if feA

i 10 if f4

We claim that P is unitary and not essentially continuous. Clearly

6: R - R s.t. V feF $(f) = e(f(T)).
T



do-

Proof of Claim:

1. 4 is unitary: Let feFT g~f~ be given, along with hefT If heA
1 2 T3

then h.*f is in A and, conversely. Similarly for h*g. Thus

If heA, $D(h*f) = V(h*g) = I

htA, (h*f) = D(h*g) = 0

So (D(h*f) = f(h*g) and f Z g. Since f and g were arbitrary, ej is

unitary.

2. (D is not essentially continuous: Let f Tbe defined by f(x) =-0

V xe[0,T). Then fE:A and Off) = 1. Let gke fT be, for example, defined

by

gk kx) (l/k)x xefO,T/2)

(-1/k)x + T/k xE[T/2,T)

T/2k[

0 T/2 T

Note that 0(gk) = 1 V k =1,2,3,....

Also note that, for any 6 > 03 N s.t. for k > N, Igk(x) - f(x)L < 65

T
V xe[0,T). (Take N s .t. < 6 or N > T/26). This contradicts the

essential continuity of (D for if e < 1, then no matter how small a

value of 6 is chosen there is a gk obeying Igk(x)-f(xHl <S6 Y xc[0,T)

but Jl(~g) - t(f)l = 1



So the condition of essential continuity is a necessary one in the

Theorem. QED

(Note that if the ma], D is such that O(f) = 8(f(T)) for a fixed e,

V fe[O,T), then 0 is both unitaryande.c.)

i1


